Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(4): 1227-1238, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977193

RESUMO

One of the main drivers within the field of bottom-up synthetic biology is to develop artificial chemical machines, perhaps even living systems, that have programmable functionality. Numerous toolkits exist to generate giant unilamellar vesicle-based artificial cells. However, methods able to quantitatively measure their molecular constituents upon formation is an underdeveloped area. We report an artificial cell quality control (AC/QC) protocol using a microfluidic-based single-molecule approach, enabling the absolute quantification of encapsulated biomolecules. While the measured average encapsulation efficiency was 11.4 ± 6.8%, the AC/QC method allowed us to determine encapsulation efficiencies per vesicle, which varied significantly from 2.4 to 41%. We show that it is possible to achieve a desired concentration of biomolecule within each vesicle by commensurate compensation of its concentration in the seed emulsion. However, the variability in encapsulation efficiency suggests caution is necessary when using such vesicles as simplified biological models or standards.


Assuntos
Células Artificiais , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Microfluídica/métodos , Biologia Sintética , Emulsões
2.
Anal Chem ; 93(17): 6656-6664, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876929

RESUMO

Great strides toward routine single-cell analyses have been made over the last decade, particularly in the field of transcriptomics. For proteomics, amplification is not currently possible and has necessitated the development of ultrasensitive platforms capable of performing such analyses on single cells. These platforms are improving in terms of throughput and multiplexability but still fall short in relation to more established methods such as fluorescence microscopy. However, microscopy methods rely on fluorescence intensity as a proxy for protein abundance and are not currently capable of reporting this in terms of an absolute copy number. Here, a microfluidic implementation of single-molecule microarrays for single-cell analysis is assessed in its ability to calibrate fluorescence microscopy data. We show that the equivalence of measurements of the steady-state distribution of protein abundance to single-molecule microarray data can be exploited to pave the way for absolute quantitation by fluorescence and immunofluorescence microscopy. The methods presented have been developed using GFP but are extendable to other proteins and other biomolecules of interest.


Assuntos
Variações do Número de Cópias de DNA , Proteínas , Microfluídica , Microscopia de Fluorescência , Análise de Célula Única
3.
Micromachines (Basel) ; 10(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052344

RESUMO

Synthetic biology is a rapidly growing multidisciplinary branch of science that exploits the advancement of molecular and cellular biology. Conventional modification of pre-existing cells is referred to as the top-down approach. Bottom-up synthetic biology is an emerging complementary branch that seeks to construct artificial cells from natural or synthetic components. One of the aims in bottom-up synthetic biology is to construct or mimic the complex pathways present in living cells. The recent, and rapidly growing, application of microfluidics in the field is driven by the central tenet of the bottom-up approach-the pursuit of controllably generating artificial cells with precisely defined parameters, in terms of molecular and geometrical composition. In this review we survey conventional methods of artificial cell synthesis and their limitations. We proceed to show how microfluidic approaches have been pivotal in overcoming these limitations and ushering in a new generation of complexity that may be imbued in artificial cells and the milieu of applications that result.

4.
Sci Rep ; 8(1): 14380, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258167

RESUMO

We present a simple, facile method to micropattern planar metal electrodes defined by the geometry of a microfluidic channel network template. By introducing aqueous solutions of metal into reversibly adhered PDMS devices by desiccation instead of flow, we are able to produce difficult to pattern "dead end" or discontinuous features with ease. We characterize electrodes fabricated using this method and perform electrical lysis of mammalian cancer cells and demonstrate their use as part of an antibody capture assay for GFP. Cell lysis in microwell arrays is achieved using the electrodes and the protein released is detected using an antibody microarray. We show how the template channels used as part of the workflow for patterning the electrodes may be produced using photolithography-free methods, such as laser micromachining and PDMS master moulding, and demonstrate how the use of an immiscible phase may be employed to create electrode spacings on the order of 25-50 µm, that overcome the current resolution limits of such methods. This work demonstrates how the rapid prototyping of electrodes for use in total analysis systems can be achieved on the bench with little or no need for centralized facilities.

5.
J Vis Exp ; (137)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-30035757

RESUMO

Often cellular behavior and cellular responses are analyzed at the population level where the responses of many cells are pooled together as an average result masking the rich single cell behavior within a complex population. Single cell protein detection and quantification technologies have made a remarkable impact in recent years. Here we describe a practical and flexible single cell analysis platform based on addressable droplet microarrays. This study describes how the absolute copy numbers of target proteins may be measured with single cell resolution. The tumor suppressor p53 is the most commonly mutated gene in human cancer, with more than 50% of total cancer cases exhibiting a non-healthy p53 expression pattern. The protocol describes steps to create 10 nL droplets within which single human cancer cells are isolated and the copy number of p53 protein is measured with single molecule resolution to precisely determine the variability in expression. The method may be applied to any cell type including primary material to determine the absolute copy number of any target proteins of interest.


Assuntos
Análise em Microsséries/métodos , Nanotecnologia/métodos , Proteínas/metabolismo , Análise de Célula Única/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...