Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.918
Filtrar
1.
Future Med Chem ; 16(13): 1347-1355, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39109432

RESUMO

Aim: A series of isocoumarin-chalcone hybrids were prepared and assays for the inhibition of four isoforms of human carbonic anhydrase (hCA; EC 4.2.1.1), hCA I, II, IX and XII. Materials & methods: Isocoumarin-chalcone hybrids were synthesized by condensing acetyl-isocoumarin with aromatic aldehydes. They did not significantly inhibit off-target cytosolic isoforms hCA I and II (KI >100 µM) but acted as low micromolar or submicromolar inhibitors for the tumor-associated isoforms hCA IX and XII. Results & conclusion: Our work provides insights into a new and scarcely investigated chemotype which provides interesting tumor-associated CA inhibitors, considering that some such derivatives like sulfonamide SLC-0111 are in advanced clinical trials for the management of metastatic advanced solid tumors.


A series of isocoumarin­chalcone hybrids was prepared and assays for the inhibition of four isoforms of the metalloenzyme carbonic anhydrase (CA; EC 4.2.1.1), i.e., human (h) isoforms hCA I, II, IX and XII. Isocoumarins were less investigated as inhibitors of this enzyme. Here we show that the isocoumarin­chalcone hybrids do not significantly inhibit the off-target cytosolic isoforms hCA I and II (KIs >100 µM) but act as low micromolar inhibitors for the tumor-associated isoforms hCA IX and XII. Our work thus provides insights into a new and scarcely investigated chemotype which may provide interesting tumor-associated CA inhibitors, because some such compounds, e.g., the sulfonamide SLC-0111, are presently in advanced clinical trials for the management of metastatic advanced solid tumors.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Isocumarinas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Humanos , Anidrases Carbônicas/metabolismo , Isocumarinas/química , Isocumarinas/farmacologia , Isocumarinas/síntese química , Chalcona/química , Chalcona/farmacologia , Relação Estrutura-Atividade , Isoenzimas/metabolismo , Isoenzimas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estrutura Molecular , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química
2.
J Inorg Biochem ; 260: 112689, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39121601

RESUMO

In the search of new cymantrenyl- and ferrocenyl-sulfonamides as potencial inhibitors of human carbonic anhydrases (hCAs), four compounds based on N-ethyl or N-methyl benzenesulfonamide units have been obtained. These cymantrenyl (1a-b) and ferrocenyl (2a-b) derivatives were prepared by the reaction between aminobenzene sulfonamides ([NH2-(CH2)n-(C6H4)-SO2-NH2)], where n = 1, 2) with cymantrenyl sulfonyl chloride (P1) or ferrocenyl sulfonyl chloride (P2), respectively. All compounds were characterized by conventional spectroscopic techniques and cyclic voltammetry. In the solid state, the molecular structures of compounds 1a, 1b, and 2b were determined by single-crystal X-ray diffraction. Biological evaluation as carbonic anhydrases inhibitors were carried out and showed derivatives 1b y 2b present a higher inhibition than the drug control for the Human Carbonic Anhydrase (hCA) II and IX isoforms (KI = 7.3 nM and 5.8 nM, respectively) and behave as selective inhibition for hCA II isoform. Finally, the docking studies confirmed they share the same binding site and interactions as the known inhibitors acetazolamide (AAZ) and agree with biological studies.

3.
J Med Chem ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141375

RESUMO

Drug-resistant gonorrhea is caused by the bacterial pathogen Neisseria gonorrhoeae, for which there is no recommended oral treatment. We have demonstrated that the FDA-approved human carbonic anhydrase inhibitor ethoxzolamide potently inhibits N. gonorrhoeae; however, is not effective at reducing N. gonorrhoeae bioburden in a mouse model. Thus, we sought to optimize the pharmacokinetic properties of the ethoxzolamide scaffold. These efforts resulted in analogs with improved activity against N. gonorrhoeae, increased metabolic stability in mouse liver microsomes, and improved Caco-2 permeability compared to ethoxzolamide. Improvement in these properties resulted in increased plasma exposure in vivo after oral dosing. Top compounds were investigated for in vivo efficacy in a vaginal mouse model of gonococcal genital tract infection, and they significantly decreased the gonococcal burden compared to vehicle and ethoxzolamide controls. Altogether, results from this study provide evidence that ethoxzolamide-based compounds have the potential to be effective oral therapeutics against gonococcal infection.

4.
Comput Biol Med ; 181: 109029, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173489

RESUMO

Tuberculosis (TB) is an infectious disease that primarily affects the lungs of humans and accounts for Mycobacterium tuberculosis (Mtb) bacteria as the etiologic agent. In this study, we introduce a computational framework designed to identify the important chemical features crucial for the effective inhibition of Mtb ß-CAs. Through applying a mechanistic model, we elucidated the essential features pivotal for robust inhibition. Using this model, we engineered molecules that exhibit potent inhibitory activity and introduce relevant novel chemistry. The designed molecules were prioritized for synthesis based on their predicted pKi values via the QSAR (Quantitative Structure-Activity Relationship) model. All the rationally designed and synthesized compounds were evaluated in vitro against different carbonic anhydrase isoforms expressed from the pathogen Mtb; moreover, the off-target and widely human-expressed CA I and II were also evaluated. Among the reported derivatives, 2, 4, and 5 demonstrated the most valuable in vitro activity, resulting in promising candidates for the treatment of TB infection. All the synthesized molecules exhibited favorable pharmacokinetic and toxicological profiles based on in silico predictions. Docking analysis confirmed that the zinc-binding groups bind effectively into the catalytic triad of the Mtb ß-Cas, supporting the in vitro outcomes with these binding interactions. Furthermore, molecules with good prediction accuracies according to previously established mechanistic and QSAR models were utilized to delve deeper into the realm of systems biology to understand their mechanism in combating tuberculotic pathogenesis. The results pointed to the key involvement of the compounds in modulating immune responses via NF-κß1, SRC kinase, and TNF-α to modulate granuloma formation and clearance via T cells. This dual action, in which the pathogen's enzyme is inhibited while modulating the human immune machinery, represents a paradigm shift toward more effective and comprehensive treatment approaches for combating tuberculosis.

5.
Arch Pharm (Weinheim) ; : e2400366, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991221

RESUMO

The present research focused on the tail-approach synthesis of novel extended thiazolotriazoles (8a-8j) and triazolothiadiazines (11a-11j) including aminotriazole intermediate 10. After successful synthesis, all the compounds were evaluated for their inhibition potential against cytosolic isoforms of human carbonic anhydrase (hCA I, II), tumor-linked transmembrane isoforms (hCA IX, XII), and cathepsin B. As per the inhibition data, the newly synthesized compounds showed poor inhibition against hCA I. Many of the compounds showed effective inhibition toward hCA IX and/or XII in low nanomolar concentration. Despite the strong to moderate inhibition of hCA II by these compounds, more than half of them demonstrated better inhibition against hCA IX and/or XII, comparatively. Further, insights of CA inhibition data of these extended analogs and their comparison with earlier reported thiazolotriazole and triazolothiadiazine derivatives might help in the rational design of novel potent and selective hCA IX and XII inhibitors. The novel compounds were also found to possess anti-cathepsin B potential at a low concentration of 10-7 M. Broadly, compounds of series 11a-11j presented more effective inhibition against cathepsin B than their counterparts in series 8a-8j. Moreover, these in vitro results with respect to cathepsin B inhibition were also supported by the in silico insights obtained via molecular modeling studies.

6.
Arch Pharm (Weinheim) ; : e2400439, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079940

RESUMO

We synthesized herein 16 compounds (SUT1-SUT16) as potential carbonic anhydrase (CA) inhibitors utilizing the tail-approach design. Based on this strategy, we connected benzenesulfonamide, the zinc-binding scaffold, to different urea moieties with the 1,3,4-thiadiazole ring as a linker. We obtained the target compounds by the reaction of 4-(5-amino-1,3,4-thiadiazol-2-yl)benzenesulfonamide with aryl isocyanates. Upon confirmation of their structures, the compounds were screened for their ability to inhibit the tumor-related human (h) isoforms human carbonic anhydrase (hCA) IX and XII, as well as the physiologically dominant hCA I and II. Most of the molecules demonstrated Ki values ≤ 10 nM with different selectivity profiles. The binding modes of SUT9, SUT10, and SUT5, the most effective inhibitors of hCA II, IX, and XII, respectively, were predicted by molecular docking. SUT16 (4-{5-[3-(naphthalen-1-yl)ureido]-1,3,4-thiadiazol-2-yl}benzenesulfonamide) was found to be the most selective inhibitor of the cancer-associated isoforms hCA IX and XII over the off-target isoforms, hCAI and II. The interaction dynamics and stability of SUT16 within hCA IX and XII were investigated by molecular dynamics simulations as well as dynophore analysis. Based on computational data, increased hydrophobic contacts and hydrogen bonds in the tail part of these molecules within hCA IX and XII were found as favorable interactions leading to effective inhibitors of cancer-related isoforms.

7.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064868

RESUMO

A new series of piperazine derivatives were synthesized and studied with the aim of obtaining dual inhibitors of P-glycoprotein (P-gp) and carbonic anhydrase XII (hCA XII) to synergistically overcome the P-gp-mediated multidrug resistance (MDR) in cancer cells expressing the two proteins, P-gp and hCA XII. Indeed, these hybrid compounds contain both P-gp and hCA XII binding groups on the two nitrogen atoms of the heterocyclic ring. All compounds showed good inhibitory activity on each protein (P-gp and hCA XII) studied individually, and many of them showed a synergistic effect in the resistant HT29/DOX and A549/DOX cell lines which overexpress both the target proteins. In particular, compound 33 displayed the best activity by enhancing the cytotoxicity and intracellular accumulation of doxorubicin in HT29/DOX and A549/DOX cells, thus resulting as promising P-gp-mediated MDR reverser with a synergistic mechanism. Furthermore, compounds 13, 27 and 32 induced collateral sensitivity (CS) in MDR cells, as they were more cytotoxic in resistant cells than in the sensitive ones; their CS mechanisms were extensively investigated.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Piperazinas , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/química , Piperazina/química , Piperazina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células HT29 , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular , Células A549
8.
Expert Opin Ther Targets ; 28(7): 623-635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028535

RESUMO

INTRODUCTION: Cholera is a bacterial diarrheal disease caused by pathogen bacteria Vibrio cholerae, which produces the cholera toxin (CT). In addition to improving water sanitation, oral cholera vaccines have been developed to control infection. Besides, rehydration and antibiotic therapy are complementary treatment strategies for cholera. ToxT regulatory protein activates transcription of CT gene, which is enhanced by bicarbonate (HCO3-). AREAS COVERED: This review delves into the genomic blueprint of V. cholerae, which encodes for α-, ß-, and γ- carbonic anhydrases (CAs). We explore how the CAs contribute to the pathogenicity of V. cholerae and discuss the potential of CA inhibitors in mitigating the disease's impact. EXPERT OPINION: CA inhibitors can reduce the virulence of bacteria and control cholera. Here, we reviewed all reported CA inhibitors, noting that α-CA from V. cholerae (VchCAα) was the most effective inhibited enzyme compared to the ß- and γ-CA families (VchCAß and VchCAγ). Among the CA inhibitors, acyl selenobenzenesulfonamidenamides and simple/heteroaromatic sulfonamides were the best VchCA inhibitors in the nM range. It was noted that some antibacterial compounds show good inhibitory effects on all three bacterial CAs. CA inhibitors belonging to other classes may be synthesized and tested on VchCAs to harness cholera.


Assuntos
Antibacterianos , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Cólera , Vibrio cholerae , Vibrio cholerae/enzimologia , Inibidores da Anidrase Carbônica/farmacologia , Cólera/tratamento farmacológico , Cólera/microbiologia , Humanos , Antibacterianos/farmacologia , Anidrases Carbônicas/metabolismo , Animais , Virulência , Toxina da Cólera/farmacologia , Toxina da Cólera/antagonistas & inibidores , Vacinas contra Cólera/farmacologia , Desenvolvimento de Medicamentos
9.
J Enzyme Inhib Med Chem ; 39(1): 2372731, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39012078

RESUMO

This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the ß-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.


Assuntos
Acinetobacter baumannii , Ânions , Antibacterianos , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Anidrases Carbônicas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Ânions/farmacologia , Ânions/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Estrutura Molecular
10.
Org Biomol Chem ; 22(32): 6532-6542, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39072494

RESUMO

A wide range of 3-selenylindoles were synthesized via an eco-friendly approach that uses Oxone® as the oxidant in the presence of a catalytic amount of iodine. This mild and economical protocol showed broad functional group tolerance and operational simplicity. A series of novel selenylindoles bearing a benzenesulfonamide moiety were also synthesized and evaluated as carbonic anhydrase inhibitors of the human (h) isoforms hCa I, II, IX, and XII, which are involved in pathologies such as glaucoma and cancer. Several derivatives showed excellent inhibitory activity towards these isoforms in the nanomolar range, lower than that shown by acetazolamide.


Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Indóis , Iodo , Oxirredução , Sulfonamidas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Humanos , Anidrases Carbônicas/metabolismo , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Iodo/química , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular
11.
ChemMedChem ; : e202400345, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031732

RESUMO

Novel chalcogen-containing amides and esters bearing the benzenesulfonamide moiety have been synthesised upon nucleophilic conjugate addition of thiols and selenols to suitable electron-deficient alkenes. The activity of the synthesised compounds as Carbonic Anhydrases inhibitors has been investigated in vitro and the inhibition mechanism has been elucidated by X-rays studies.

12.
RSC Adv ; 14(32): 23257-23272, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39045402

RESUMO

A series of sulfonamide-derived quinoxaline 1,4-dioxides were synthesized and evaluated as inhibitors of carbonic anhydrases (CA) with antiproliferative potency. Overall, the synthesized compounds demonstrated good inhibitory activity against four CA isoforms. Compound 7g exhibited favorable potency in inhibiting a CA IX isozyme with a K i value of 42.2 nM compared to the reference AAZ (K i = 25.7 nM). Nevertheless, most of the synthesized compounds have their highest activity against CA I and CA II isoforms over CA IX and CA XII. A molecular modeling study was used for an estimation of the binding mode of the selected ligand 7g in the active site of CA IX. The most active compounds (7b, 7f, 7h, and 18) exhibited significant antiproliferative activity against MCF-7, Capan-1, DND-41, HL60, and Z138 cell lines, with IC50 values in low micromolar concentrations. Moreover, derivatives 7a, 7e, and 8g showed similar hypoxic cytotoxic activity and selectivity compared to tirapazamine (TPZ) against adenocarcinoma cells MCF-7. The structure-activity relationships analysis revealed that the presence of a halogen atom or a sulfonamide group as substituents in the phenyl ring of quinoxaline-2-carbonitrile 1,4-dioxides was favorable for overall cytotoxicity against most of the tested cancer cell lines. Additionally, the presence of a carbonitrile fragment in position 2 of the heterocycle also had a positive effect on the antitumor properties of such derivatives against the majority of cell lines. The most potent derivative, 3-trifluoromethylquinoxaline 1,4-dioxide 7h, demonstrated higher or close antiproliferative activity compared to the reference agents, such as doxorubicin, and etoposide, with an IC50 range of 1.3-2.1 µM. Analysis of the obtained results revealed important patterns in the structure-activity relationship. Moreover, these findings highlight the potential of selected lead sulfonamides on the quinoxaline 1,4-dioxide scaffold for further in-depth evaluation and development of chemotherapeutic agents targeting carbonic anhydrases.

13.
Arch Biochem Biophys ; 758: 110074, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936682

RESUMO

Silicase, an enzyme that catalyzes the hydrolysis of silicon-oxygen bonds, is a crucial player in breaking down silicates into silicic acid, particularly in organisms like aquatic sponges with siliceous skeletons. Despite its significance, our understanding of silicase remains limited. This study comprehensively examines silicase from the demosponge Suberites domuncula, focusing on its kinetics toward CO2 as a substrate, as well as its silicase and esterase activity. It investigates inhibition and activation profiles with a range of inhibitors and activators belonging to various classes. By comparing its esterase activity to human carbonic anhydrase II, we gain insights into its enzymatic properties. Moreover, we investigate silicase's inhibition and activation profiles, providing valuable information for potential applications. We explore the evolutionary relationship of silicase with related enzymes, revealing potential functional roles in biological systems. Additionally, we propose a biochemical mechanism through three-dimensional modeling, shedding light on its catalytic mechanisms and structural features for both silicase activity and CO2 hydration. We highlight nature's utilization of enzymatic expertise in silica metabolism. This study enhances our understanding of silicase and contributes to broader insights into ecosystem functioning and Earth's geochemical cycles, emphasizing the intricate interplay between biology and the environment.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Dióxido de Carbono/metabolismo , Animais , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Humanos , Suberites/enzimologia , Suberites/metabolismo , Cinética , Anidrase Carbônica II/metabolismo , Anidrase Carbônica II/química , Modelos Moleculares
14.
RSC Med Chem ; 15(6): 1929-1941, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911163

RESUMO

In the last decades, carbonic anhydrases (CAs) have become the top investigated innovative pharmacological targets and, in particular, isoforms IX and XII have been widely studied due to the evidence of their overexpression in hypoxic tumors. The frantic race to find new anticancer agents places the quick preparation of large libraries of putative bioactive compounds as the basis of a successful drug discovery and development programme. In this context, multi-component and, in general, one-step reactions are becoming very popular and, among them, Biginelli's reaction gave clean and easy-to-isolate products. Thus, we synthesized a series of Biginelli's products (10-17a-b) and similar derivatives (20-21) bearing the benzenesulfonamide moiety, which is known to inhibit CA enzymes. Through the stopped-flow technique, we were able to assess their ability to inhibit the targeted CAs IX and XII in the nanomolar range with promising selectivity over the physiologically relevant isoforms I and II. Crystallography studies and docking simulations helped us to gain insight into the interaction patterns established in the enzyme-inhibitor complex. From a chemical similarity-based screening of in-house libraries of compounds, a diphenylpyrimidine (23) emerged. The surprisingly potent inhibitory activity of 23 for CAs IX and XII along with its strong antiproliferative effect on two (triple-negative breast cancer MDA-MB-231 and glioblastoma U87MG) cell lines laid the foundation for further investigation, again confirming the key role of CAs in cancer.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38914798

RESUMO

BACKGROUND AND OBJECTIVES: Both AW-9A (coumarin derivative) and WES-1 (sulfonamide derivative) were designed and synthesized as potential selective carbonic anhydrase inhibitors and were tested for anticancer activity. This study was undertaken to investigate their potential inhibitory effects on the major human cytochrome P450 (CYP) drug-metabolizing enzymes. METHODS: Specific CYP probe substrates and validated analytical methods were used to measure the activity of the tested CYP enzymes. Furthermore, in silico simulations were conducted to understand how AW-9A and WES-1 bind to CYP2A6 at a molecular level. Molecular docking experiments were performed using the high-resolution X-ray structure, Protein Data Bank (PDB) ID: 2FDV for CYP2A6. RESULTS: CYP2E1-catalyzed chlorzoxazone-6'-hydroxylation was strongly inhibited by AW-9A and WES-1 with IC50 values of 0.084 µM and 0.101 µM, respectively. CYP2A6-catalyzed coumarin-7'-hydroxylation was moderately inhibited by AW-9A (IC50 = 4.2 µM). CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 enzymes were weakly or negligibly inhibited by both agents. Docking studies suggest elevated potential to block the catalytic activity of CYP2A6. CONCLUSIONS: These findings point to the feasibility of utilizing these agents as promising chemopreventive agents (owing to inhibition of CYP2E1), and AW-9A as a smoking cessation aid (owing to inhibition of CYP2A6). Additional in-vivo studies should be conducted to examine the impact of CYP2A6 and CYP2E1 inhibition on drug interactions with probe substrates of these enzymes.

16.
Expert Opin Ther Pat ; 34(7): 565-582, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861278

RESUMO

INTRODUCTION: Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED: By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION: Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.


Assuntos
Antineoplásicos , Citocinas , Inibidores Enzimáticos , NAD , Neoplasias , Nicotinamida Fosforribosiltransferase , Patentes como Assunto , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia , Animais , NAD/metabolismo , Antineoplásicos/farmacologia , Citocinas/metabolismo , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Desenvolvimento de Medicamentos , Desenho de Fármacos
17.
Arch Pharm (Weinheim) ; : e2400259, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873921

RESUMO

Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.

18.
ACS Med Chem Lett ; 15(6): 972-978, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894925

RESUMO

In this study, a focused library of oxime ester derivatives of 2,4-dichloro-5-sulfamoylbenzoic acid (lasamide) containing Schiff bases was synthesized and tested in vitro for their ability to inhibit the cytosolic human carbonic anhydrases (hCAs) I and II, as well as the transmembrane and tumor-associated IX and XII isoforms. As a result, we obtained a first line of knowledge on lasamide derivatives potentially useful for development as CA inhibitors (CAIs). In particular, we focused our attention on the derivative 11, which was selective toward hCAs IX and XII over the cytosolic isoenzymes. An in silico study was conducted to assess the binding mode of 11 within hCAs IX and XII. Also, antiproliferative assays highlighted promising derivatives. The data obtained in this study are currently in use for the development of better-performing compounds on the tumor-associated isoforms.

19.
Expert Opin Ther Pat ; 34(6): 511-524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856987

RESUMO

INTRODUCTION: Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management. AREAS COVERED: New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target. EXPERT OPINION: By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.


Assuntos
Antibacterianos , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana , Gonorreia , Neisseria gonorrhoeae , Patentes como Assunto , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Antibacterianos/farmacologia , Humanos , Animais , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Inibidores da Topoisomerase II/farmacologia , Oxazolidinonas/farmacologia , Testes de Sensibilidade Microbiana , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , DNA Girase/metabolismo , Morfolinas , Isoxazóis , Compostos de Espiro , Compostos Heterocíclicos com 3 Anéis , Barbitúricos , Acenaftenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA