Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 325: 111488, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206962

RESUMO

Among abiotic stressors, drought and enhanced ultraviolet radiation (UV) received a lot of attention, because of their potential to impair plant growth. Since drought and UV induce partially similar protective mechanisms, we tested the hypothesis that UV ameliorates the effect of reduced water availability (WA) in selected grass (Holcus mollis and Agrostis capillaris) and forb species (Hypericum maculatum and Rumex acetosa). During 2011-2014, an outdoor manipulation experiment was conducted on a mountain grassland ecosystem (Beskydy Mts; Czech Republic). Lamellar shelters were used to pass (WAamb) or exclude (WA-) incident precipitation in order to simulate reduced water availability (WA). In addition, the lamellas were made from acrylics either transmitting (UVamb) or blocking (UV-) incident UV. Generally, both UV exposure and reduced WA enhanced epidermal UV-screening, while exposure to both factors resulted in less than additive interactions. Although UV radiation increased epidermal UV-screening rather in the grass (up to 29 % in A. capillaris) than forb (up to 12 % in H. maculatum) species and rather in well-watered than reduced WA plants, such acclimation response did not result in significant alleviation of reduced WA effects on gas exchange and morphological parameters. The study contributes to a better understanding of plant responses to complex environmental conditions and will help for successful modelling forecasts of future climate change impacts.


Assuntos
Secas , Poaceae , Poaceae/fisiologia , Raios Ultravioleta , Pradaria , Ecossistema , Água/fisiologia , Plantas/efeitos da radiação
2.
Ecol Evol ; 12(9): e9330, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36188527

RESUMO

An increase in extreme weather and changes in other conditions associated with ongoing climate change are exposing ecosystems to a very wide range of environmental drivers that interact in ways which are not sufficiently understood. Such uncertainties in how ecosystems respond to multifactorial change make it difficult to predict the impacts of environmental change on ecosystems and their functions. Since water deficit (WD) and ultraviolet radiation (UV) trigger similar protective mechanisms in plants, we tested the hypothesis that UV modulates grassland acclimation to WD, mainly through changes in the root/shoot (R/S) ratio, and thus enhances the ability of grassland to acquire water from the soil and hence maintain its productivity. We also tested the potential of spectral reflectance and thermal imaging for monitoring the impacts of WD and UV on grassland production parameters. The experimental plots were manipulated by lamellar shelters allowing precipitation to pass through or to be excluded. The lamellas were either transmitting or blocking the UV. The results show that WD resulted in a significant decrease in aboveground biomass (AB). In contrast, belowground biomass (BB), R/S ratio, and total biomass (TB) increased significantly in response to WD, especially in UV exclusion treatment. UV exposure had a significant effect on AB and BB, but only in the last year of the experiment. The differences in the effect of WD between years show that the effect of precipitation removal is largely influenced by the potential evapotranspiration (PET) in a given year and hence mainly by air temperatures, while the resulting effect on production parameters is best correlated with the water balance given by the difference between precipitation and PET. Canopy temperature and selected spectral reflectance indices showed a significant response to WD and also significant relationships with morphological (AB, R/S) and biochemical (C/N ratio) parameters. In particular, the vegetation indices NDVI and RDVI provided the best correlations of biomass changes caused by WD and thus the highest potential to remotely sense drought effects on terrestrial vegetation.

3.
Sci Total Environ ; 717: 137058, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062254

RESUMO

We tested the hypothesis that application of stable forms of organic carbon (C) into the soil reduces leaching of nitrogen (N). We also examined the potential to estimate N leaching employing N-sensitive spectral reflectance indices. During three growing seasons 2013-2015, field experiment at two experimental sites combining application of distinct N doses (0 (N0), 35 (N35), 70 (N70), and 140 (N140) kg N ha-1) and two stable forms of organic C (lignohumate and compost) was established to measure N uptake by winter wheat and its leaching to subsoil layers. The spectral reflectance at canopy level was measured simultaneously with N content in leaf dry matter at the beginning of the grain filling phase. At full maturity, the above-ground biomass, grain yield, and grain protein content were evaluated. That data was used to calculate N uptake in grain. The N140 dose led to increased N uptake by grain of 64% and 73% in the wetter years 2013 and 2014, respectively, and even by 118% in the drier year 2015 in comparison with the N0 treatment. N leaching to subsoil increased substantially with higher N dose, but only in wetter years 2013 (by 74%) and 2014 (by 87%). By contrast, no effect of N dose on leached N was found in the dry year 2015. The application of organic C along with the N140 dose substantially reduced N leaching by 26% and 29% in 2014 and 2015, respectively. Moreover, we demonstrated that normalized red-edge spectral reflectance index (NRERI) is able to predict N uptake by wheat and it can serve as an indicator of N leaching in heavy-rainfall years. Our results thus point towards possible agronomic practices and use of remote-sensing techniques to reduce groundwater contamination by N-based fertilizers.


Assuntos
Triticum , Carbono , Fertilizantes , Minerais , Nitrogênio , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...