Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716888

RESUMO

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.

3.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806055

RESUMO

Glioblastoma is the most malignant primary brain tumor, and a cornerstone in its treatment is radiotherapy. However, tumor cells surviving after irradiation indicates treatment failure; therefore, better understanding of the mechanisms regulating radiotherapy response is of utmost importance. In this study, we generated clinically relevant irradiation-exposed models by applying fractionated radiotherapy over a long time and selecting irradiation-survivor (IR-Surv) glioblastoma cells. We examined the transcriptomic alterations, cell cycle and growth rate changes and responses to secondary radiotherapy and DNA damage response (DDR) modulators. Accordingly, IR-Surv cells exhibited slower growth and partly retained their ability to resist secondary irradiation. Concomitantly, IR-Surv cells upregulated the expression of DDR-related genes, such as CHK1, ATM, ATR, and MGMT, and had better DNA repair capacity. IR-Surv cells displayed downregulation of hypoxic signature and lower induction of hypoxia target genes, compared to naïve glioblastoma cells. Moreover, Chk1 inhibition alone or in combination with irradiation significantly reduced cell viability in both naïve and IR-Surv cells. However, IR-Surv cells' response to Chk1 inhibition markedly decreased under hypoxic conditions. Taken together, we demonstrate the utility of combining DDR inhibitors and irradiation as a successful approach for both naïve and IR-Surv glioblastoma cells as long as cells are refrained from hypoxic conditions.


Assuntos
Glioblastoma , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA , Glioblastoma/genética , Humanos , Hipóxia , Tolerância a Radiação/genética , Sobreviventes
4.
Neurol Res ; 44(8): 708-718, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35156564

RESUMO

OBJECTIVES: The role of white matter astrocytes in absence epilepsy is unknown. The present study aims to quantify astrocytic markers glial fibrillary acidic protein (GFAP), gap junction's proteins connexin 30 (Cx30) and connexin 43 (Cx43) in the corpus callosum (CC) of genetic absence epileptic rats from Strasbourg (GAERS), Wistar albino glaxo rats from Rijswijk (WAG/Rij)and compare the results with control animals. METHODS: -The density of GFAP, Cx30 and Cx43 positive astrocytes in per unite area were quantified in the CC of GAERS, WAG/Rij and control animals using immunohistochemistry and real-time quantitative polymerase chain reaction (RT-qPCR). The quantifications were made from three regions of CC; below the primary somatosensory (S1BF), below the motor (M1) and below the retrosplenial (RSG) cortices. RESULTS: oThe number GFAP, Cx30 and Cx43 immunopositive astrocytes showed heterogeneous distribution within the CC. The GFAP immunopositive astrocytes was significantly high in the S1BF region of the three strains. The immunopositive GFAP and Cx43 showed significant decrease in the S1BF and M1 regions in GAERS and WAG/Rij compared to control animals, however, an increase in the immunopositive Cx30 was observed in the same regions in both GAERS and WAG/Rij compared to control Wistar animals but the increase was significant for GAERS but not for WAG/Rij. The RT-qPCR analysis was corroborated by GFAP immunohistochemistry results. CONCLUSION: The different expression pattern of the two Cx's in the CC of the epileptic strains compared to control animals may indicate a compensatory response or maybe the cause of generalization of absence seizures.


Assuntos
Epilepsia Tipo Ausência , Substância Branca , Animais , Astrócitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Ratos , Ratos Wistar , Substância Branca/metabolismo
5.
Synapse ; 76(3-4): e22225, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35137459

RESUMO

Intercellular communication via gap junctions (GJs) has a wide variety of complex and essential functions in the CNS. In the present developmental study, we aimed to quantify the number of astrocytic GJs protein connexin 30 (Cx30) of genetic model of absence epilepsy rats from Strasbourg (GAERS) at postnatal P10, P30, and P60 days in the epileptic focal areas involved in the cortico-thalamic circuit. We compared the results with Wistar rats using immunohistochemistry and western blotting. The number of Cx30 immunopositive astrocytes per unit area were quantified for the somatosensory cortex (SSCx), ventrobasal (VB), and lateral geniculate (LGN) thalamic nuclei of the two strains and Cx30 western blot was applied to the tissue samples from the same regions. Both immunohistochemical and western blot results revealed the presence of Cx30 in all regions studied at P10 in both Wistar and GAERS animals. The SSCx, VB, and LGN of Wistar animals showed progressive increase in the number of Cx30 immunopositive labeled astrocytes from P10 to P30 and reached a peak at P30; then a significant decline was observed from P30 to P60 for the SSCx and VB. However, in GAERS Cx30 immunopositive labeled astrocytes showed a progressive increase from P10 to P60 for all brain regions studied. The immunohistochemical data highly corresponded with western blotting results. We conclude that the developmental disproportional expression of Cx30 in the epileptic focal areas in GAERS may be related to the onset of absence seizures or may be related to the neurogenesis of absence epilepsy.


Assuntos
Epilepsia Tipo Ausência , Animais , Astrócitos/metabolismo , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Ratos , Ratos Wistar
7.
Clin Genet ; 100(4): 486-488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270086

RESUMO

Jawad syndrome is a multiple congenital anomaly and intellectual disability syndrome with mutation in RBBP8 reported only in two families. Here, we report on two new families from Pakistan and identified a previously reported variant in RBBP8, NM_002894.3:c.1808-1809delTA. We could show that this mutation impairs splicing resulting in two different abnormal transcripts. Finally, we could verify a shared haplotype among all four families and estimate the founder event to have occurred some 24 generations ago.


Assuntos
Endodesoxirribonucleases/genética , Dedos/anormalidades , Efeito Fundador , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Splicing de RNA , Dedos do Pé/anormalidades , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Paquistão , Linhagem , Fenótipo , Análise de Sequência de DNA , Sequenciamento do Exoma
8.
Brain Struct Funct ; 226(7): 2113-2123, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097147

RESUMO

The synchronization of astrocytes via gap junctions (GJ) is a crucial mechanism in epileptic conditions, contributing to the synchronization of the neuronal networks. Little is known about the endogenous response of GJ in genetic absence epileptic animal models. We evaluated and quantified astrocyte GJ protein connexin (Cx) 30 and 43 in the somatosensory cortex (SSCx), ventrobasal (VB), centromedian (CM), lateral geniculate (LGN) and thalamic reticular (TRN) nuclei of thalamus of genetic absence epilepsy rats from Strasbourg (GAERS), Wistar albino glaxo rats from Rijswijk (WAG/Rij) and control Wistar animals using immunohistochemistry and Western Blot. The Cx30 and Cx43 immunopositive astrocytes per unit area were quantified for each region of the three animal strains. Furthermore, Cx30 and Cx43 Western Blot was applied to the tissue samples from the same regions of the three strain. The number of Cx30 immunopositive astrocytes showed significant increase in both GAERS and WAG/Rij compared to control Wistar in all brain regions studied except LGN of WAG/Rij animals. Furthermore, Cx43 in both GAERS and WAG/Rij showed significant increase in SSCx, VB and TRN. The protein expression was increased in both Cx30 and Cx43 in the two epileptic strains compared to control Wistar animals. The significant increase in the astrocytic GJ proteins Cx30 and Cx43 and the differences in the co-expression of Cx30 and Cx43 in the genetically absence epileptic strains compared to control Wistar animals may suggest that astrocytic Cx's may be involved in the mechanism of absence epilepsy. Increased number of astrocytic Cx's in GAERS and WAG/Rij may represent a compensatory response of the thalamocortical circuitry to the absence seizures or may be related to the production and/or development of absence seizures.


Assuntos
Epilepsia Tipo Ausência , Animais , Astrócitos , Conexina 43 , Modelos Animais de Doenças , Eletroencefalografia , Junções Comunicantes , Ratos , Ratos Wistar , Convulsões
9.
Neurol Res ; 42(12): 1061-1069, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32715947

RESUMO

OBJECTIVES: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively triggers apoptosis in cancer cells, but not in normal cells. Resistance of glioblastoma cells to TRAIL is a major obstacle for successful clinical treatment of TRAIL. Thus, there is an essential requirement for novel approaches to sensitize TRAIL resistance. Silver nanoparticles (AgNPs) are one of the most promising nanomaterials that show immense antitumor potential via targeting various cellular and molecular processes; however, the effects of AgNPs on TRAIL sensitivity in cancer cells remain unclear. Therefore, we hypothesized that TRAIL-conjugated AgNPs (TRAIL-AgNPs) can overcome TRAIL resistance through inducing death receptor activation in glioblastoma cells, but not normal cells. METHODS: In this study, the therapeutic effect of TRAIL-AgNPs is investigated by analyzing the cell viability, caspase activity, and CHK1 gene expression in T98 G TRAIL-Sensitive (TS) and T98 G TRAIL-Resistant (TR) glioblastoma cells. RESULTS: It is found that TRAIL-AgNPs are more toxic compared to TRAIL and AgNPs treatments alone on TR cells. While TRAIL and AgNPs alone do not enhance the caspase activity, conjugation of TRAIL to AgNPs increases the caspase activity in TR cells. Moreover, the TRAIL-AgNPs-treated TR cells show less CHK1 expression compared to the TRAIL treatment. CONCLUSION: These results suggest that TRAIL sensitivity of TR cells can be enhanced by conjugation of TRAIL with AgNPs, which would be a novel therapeutic approach to sensitize TRAIL resistance.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Prata/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Humanos , Prata/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
10.
Mol Biol Rep ; 47(2): 921-934, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31741263

RESUMO

The largest protein of the nuclear envelope (NE) is Nesprin-1 which forms a network along the NE interacting with actin, Emerin, Lamin, and SUN proteins. Mutations in the SYNE1 gene and reduction in Nesprin-1 protein levels have been reported to correlate with several age related diseases and cancer. In the present study, we tested whether Nesprin-1 overexpression can reverse the malignant phenotype of Huh7 cells, a human liver cancer cell line, which carries a mutation in the SYNE1 gene resulting in reduced Nesprin-1 protein levels, has altered nuclear shape, altered amounts and localization of NE components, centrosome localization and genome stability. Ectopic expression of a mini-Nesprin-1 led to an improvement of the nuclear shape, corrected the mislocalization of NE proteins, the centrosome positioning, and the alterations in the DNA damage response network. Additionally, Nesprin-1 had a profound effect on cellular senescence. These findings suggest that Nesprin-1 may be effective in tumorigenic cell phenotype correction of human liver cancer.


Assuntos
Carcinogênese/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Actinas/genética , Actinas/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas dos Microfilamentos/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Fenótipo
11.
Cancers (Basel) ; 11(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731490

RESUMO

High mortality rates of glioblastoma (GBM) patients are partly attributed to the invasive behavior of tumor cells that exhibit extensive infiltration into adjacent brain tissue, leading to rapid, inevitable, and therapy-resistant recurrence. In this study, we analyzed transcriptome of motile (dispersive) and non-motile (core) GBM cells using an in vitro spheroid dispersal model and identified SERPINE1 as a modulator of GBM cell dispersal. Genetic or pharmacological inhibition of SERPINE1 reduced spheroid dispersal and cell adhesion by regulating cell-substrate adhesion. We examined TGFß as a potential upstream regulator of SERPINE1 expression. We also assessed the significance of SERPINE1 in GBM growth and invasion using TCGA glioma datasets and a patient-derived orthotopic GBM model. SERPINE1 expression was associated with poor prognosis and mesenchymal GBM in patients. SERPINE1 knock-down in primary GBM cells suppressed tumor growth and invasiveness in the brain. Together, our results indicate that SERPINE1 is a key player in GBM dispersal and provide insights for future anti-invasive therapy design.

12.
Cell Death Dis ; 10(12): 894, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772153

RESUMO

Glioblastoma Multiforme (GBM) is the most common and aggressive primary brain tumor. Despite recent developments in surgery, chemo- and radio-therapy, a currently poor prognosis of GBM patients highlights an urgent need for novel treatment strategies. TRAIL (TNF Related Apoptosis Inducing Ligand) is a potent anti-cancer agent that can induce apoptosis selectively in cancer cells. GBM cells frequently develop resistance to TRAIL which renders clinical application of TRAIL therapeutics inefficient. In this study, we undertook a chemical screening approach using a library of epigenetic modifier drugs to identify compounds that could augment TRAIL response. We identified the fungal metabolite chaetocin, an inhibitor of histone methyl transferase SUV39H1, as a novel TRAIL sensitizer. Combining low subtoxic doses of chaetocin and TRAIL resulted in very potent and rapid apoptosis of GBM cells. Chaetocin also effectively sensitized GBM cells to further pro-apoptotic agents, such as FasL and BH3 mimetics. Chaetocin mediated apoptosis sensitization was achieved through ROS generation and consequent DNA damage induction that involved P53 activity. Chaetocin induced transcriptomic changes showed induction of antioxidant defense mechanisms and DNA damage response pathways. Heme Oxygenase 1 (HMOX1) was among the top upregulated genes, whose induction was ROS-dependent and HMOX1 depletion enhanced chaetocin mediated TRAIL sensitization. Finally, chaetocin and TRAIL combination treatment revealed efficacy in vivo. Taken together, our results provide a novel role for chaetocin as an apoptosis priming agent and its combination with pro-apoptotic therapies might offer new therapeutic approaches for GBMs.


Assuntos
Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Fungos/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Metaboloma , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Heme Oxigenase-1/metabolismo , Humanos , Metaboloma/efeitos dos fármacos , Camundongos , Modelos Biológicos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Transcriptoma/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína bcl-X/metabolismo
13.
Neurosci Lett ; 712: 134518, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560994

RESUMO

Astrocytes take part in the modulation of neuronal activity through the uptake and release of both GABA and glutamate. In the present study we aimed to quantify the number of astrocytes expressing the astrocyte marker glial fibrillary acidic protein (GFAP) in the somatosensory cortex (SSCx), ventrobasal (VB), centromedial (CM), reticular (TRN) and dorsal lateral geniculate (dLGN) nuclei of thalamus in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), Wistar Albino Glaxo Rats from Rijswijk (WAG/Rij) and control Wistar animals. Further, we aimed to compare the GFAP protein expression levels between the three animal strains. The GFAP-immunohistochemistry was applied to sections from the SSCx, VB, CM, TRN and dLGN and GFAP-positive astrocytes were quantified for the three animal strains. Further, GFAP Western Blot was applied to the tissue samples from the same regions of the three strain. The data obtained from Wistar animals were compared with GAERS and WAG/Rij animals. The number of GFAP-positive astrocytes per unit area in all brain regions studied showed high significance between Wistar-GAERS and Wistar-WAG/Rij except the dLGN. The GAERS had significant higher endogenous GFAP expression in all brain regions studied compared to Wistar and WAG/Rij animals. These findings demonstrate a discrete difference in both GFAP-positive astrocyte populations and GFAP protein expression levels between Wistar and genetically epileptic strains (GAERS and WAG/Rij). Absence seizures are thought to result from a possible imbalance in glutamatergic and GABAergic neurotransmission. Astrocytes regulate the concentration of glutamate and GABA in the extracellular space in the brain, the difference in the astrocyte population and GFAP protein expression in the epileptic strains clearly shows the involvement of astrocytes in the mechanism of absence epilepsy.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Epilepsia Tipo Ausência/metabolismo , Animais , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Ratos , Ratos Wistar
14.
Cell Death Discov ; 5: 64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774992

RESUMO

Harakiri (HRK) is a BH3-only protein of the Bcl-2 family and regulates apoptosis by interfering with anti-apoptotic Bcl-2 and Bcl-xL proteins. While its function is mainly characterized in the nervous system, its role in tumors is ill-defined with few studies demonstrating HRK silencing in tumors. In this study, we investigated the role of HRK in the most aggressive primary brain tumor, glioblastoma multiforme (GBM). We showed that HRK is differentially expressed among established GBM cell lines and that HRK overexpression can induce apoptosis in GBM cells at different levels. This phenotype can be blocked by forced expression of Bcl-2 and Bcl-xL, suggesting the functional interaction of Bcl-2/Bcl-xL and HRK in tumor cells. Moreover, HRK overexpression cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a known tumor-specific pro-apoptotic agent. Besides, secondary agents that augment TRAIL response, such as the histone deacetylase inhibitor MS-275, significantly increases HRK expression. In addition, GBM cell response to TRAIL and MS-275 can be partly abolished by HRK silencing. Finally, we showed that HRK induction suppresses tumor growth in orthotopic GBM models in vivo, leading to increased survival. Taken together, our results suggest that HRK expression is associated with GBM cell apoptosis and increasing HRK activity in GBM tumors might offer new therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...