Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562687

RESUMO

Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenomics approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued growth inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in promoting G1 progression.

2.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205480

RESUMO

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.

3.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909656

RESUMO

Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA, (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website (https://thecellvision.org/pifia/), PIFiA is a resource for the quantitative analysis of protein organization within the cell.

4.
Open Biol ; 10(10): 200279, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33081638

RESUMO

Protein ubiquitination is a key post-translational modification that regulates diverse cellular processes in eukaryotic cells. The specificity of ubiquitin (Ub) signalling for different bioprocesses and pathways is dictated by the large variety of mono-ubiquitination and polyubiquitination events, including many possible chain architectures. Deubiquitinases (DUBs) reverse or edit Ub signals with high sophistication and specificity, forming an integral arm of the Ub signalling machinery, thus impinging on fundamental cellular processes including DNA damage repair, gene expression, protein quality control and organellar integrity. In this review, we discuss the many layers of DUB function and regulation, with a focus on insights gained from budding yeast. Our review provides a framework to understand key aspects of DUB biology.


Assuntos
Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/metabolismo , Saccharomycetales/enzimologia , Ciclo Celular , Segregação de Cromossomos , Enzimas Desubiquitinantes/genética , Exoftalmia , Regulação da Expressão Gênica , Família Multigênica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteólise , Proteostase , Saccharomycetales/genética , Transdução de Sinais , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação
5.
Cell ; 170(2): 298-311.e20, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708998

RESUMO

The yeast Hsp70 chaperone Ssb interacts with ribosomes and nascent polypeptides to assist protein folding. To reveal its working principle, we determined the nascent chain-binding pattern of Ssb at near-residue resolution by in vivo selective ribosome profiling. Ssb associates broadly with cytosolic, nuclear, and hitherto unknown substrate classes of mitochondrial and endoplasmic reticulum (ER) nascent proteins, supporting its general chaperone function. Ssb engages most substrates by multiple binding-release cycles to a degenerate sequence enriched in positively charged and aromatic amino acids. Timely association with this motif upon emergence at the ribosomal tunnel exit requires ribosome-associated complex (RAC) but not nascent polypeptide-associated complex (NAC). Ribosome footprint densities along orfs reveal faster translation at times of Ssb binding, mainly imposed by biases in mRNA secondary structure, codon usage, and Ssb action. Ssb thus employs substrate-tailored dynamic nascent chain associations to coordinate co-translational protein folding, facilitate accelerated translation, and support membrane targeting of organellar proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Proteínas de Choque Térmico HSP70/química , Modelos Moleculares , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química
6.
Science ; 353(6306)2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27708008

RESUMO

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.


Assuntos
Redes Reguladoras de Genes , Genes Fúngicos/fisiologia , Pleiotropia Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Epistasia Genética , Genes Essenciais
7.
Mol Biol Cell ; 26(9): 1601-15, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25761633

RESUMO

Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum-, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum-mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes.


Assuntos
Retículo Endoplasmático/fisiologia , Ácido Graxo Sintases/metabolismo , Lipogênese , Mitocôndrias/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adaptação Fisiológica , Vias Biossintéticas , Meios de Cultura , Retículo Endoplasmático/ultraestrutura , Viabilidade Microbiana , Mitocôndrias/ultraestrutura , Transporte Proteico , ATPases Translocadoras de Prótons/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...