Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 47: 1-14, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957270

RESUMO

Background: The deployment of bone grafts (BGs) is critical to the success of scaffold-guided bone regeneration (SGBR) of large bone defects. It is thus critical to provide harvesting devices that maximize osteogenic capacity of the autograft while also minimizing graft damage during collection. As an alternative to the Reamer-Irrigator-Aspirator 2 (RIA 2) system - the gold standard for large-volume graft harvesting used in orthopaedic clinics today - a novel intramedullary BG harvesting concept has been preclinically introduced and referred to as the ARA (aspirator + reaming-aspiration) concept. The ARA concept uses aspiration of the intramedullary content, followed by medullary reaming-aspiration of the endosteal bone. This concept allows greater customization of BG harvesting conditions vis-à-vis the RIA 2 system. Following its successful in vitro validation, we hypothesized that an ARA concept-collected BG would have comparable in vivo osteogenic capacity compared to the RIA 2 system-collected BG. Methods: We used 3D-printed, medical-grade polycaprolactone-hydroxyapatite (mPCL-HA, wt 96 %:4 %) scaffolds with a Voronoi design, loaded with or without different sheep-harvested BGs and tested them in an ectopic bone formation rat model for up to 8 weeks. Results: Active bone regeneration was observed throughout the scaffold-BG constructs, particularly on the surface of the bone chips with endochondral bone formation, and highly vascularized tissue formed within the fully interconnected pore architecture. There were no differences between the BGs derived from the RIA 2 system and the ARA concept in new bone volume formation and in compression tests (Young's modulus, p = 0.74; yield strength, p = 0.50). These results highlight that the osteogenic capacities of the mPCL-HA Voronoi scaffold loaded with BGs from the ARA concept and the RIA 2 system are equivalent. Conclusion: In conclusion, the ARA concept offers a promising alternative to the RIA 2 system for harvesting BGs to be clinically integrated into SGBR strategies. The translational potential of this article: Our results show that biodegradable composite scaffolds loaded with BGs from the novel intramedullary harvesting concept and the RIA 2 system have equivalent osteogenic capacity. Thus, the innovative, highly intuitive intramedullary harvesting concept offers a promising alternative to the RIA 2 system for harvesting bone grafts, which are an important component for the routine translation of SGBR concepts into clinical practice.

2.
Front Bioeng Biotechnol ; 11: 1272348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860627

RESUMO

Three-dimensional (3D)-printed medical-grade polycaprolactone (mPCL) composite scaffolds have been the first to enable the concept of scaffold-guided bone regeneration (SGBR) from bench to bedside. However, advances in 3D printing technologies now promise next-generation scaffolds such as those with Voronoi tessellation. We hypothesized that the combination of a Voronoi design, applied for the first time to 3D-printed mPCL and ceramic fillers (here hydroxyapatite, HA), would allow slow degradation and high osteogenicity needed to regenerate bone tissue and enhance regenerative properties when mixed with xenograft material. We tested this hypothesis in vitro and in vivo using 3D-printed composite mPCL-HA scaffolds (wt 96%:4%) with the Voronoi design using an ISO 13485 certified additive manufacturing platform. The resulting scaffold porosity was 73% and minimal in vitro degradation (mass loss <1%) was observed over the period of 6 months. After loading the scaffolds with different types of fresh sheep xenograft and ectopic implantation in rats for 8 weeks, highly vascularized tissue without extensive fibrous encapsulation was found in all mPCL-HA Voronoi scaffolds and endochondral bone formation was observed, with no adverse host-tissue reactions. This study supports the use of mPCL-HA Voronoi scaffolds for further testing in future large preclinical animal studies prior to clinical trials to ultimately successfully advance the SGBR concept.

3.
J Funct Biomater ; 14(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37504836

RESUMO

The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.

4.
Sci Rep ; 13(1): 5574, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019938

RESUMO

Adolescent Idiopathic Scoliosis (AIS) is a 3D spine deformity that also causes ribcage and torso distortion. While clinical metrics are important for monitoring disorder progression, patients are often most concerned about their cosmesis. The aim of this study was to automate the quantification of AIS cosmesis metrics, which can be measured reliably from patient-specific 3D surface scans (3DSS). An existing database of 3DSS for pre-operative AIS patients treated at the Queensland Children's Hospital was used to create 30 calibrated 3D virtual models. A modular generative design algorithm was developed on the Rhino-Grasshopper software to measure five key AIS cosmesis metrics from these models-shoulder, scapula and hip asymmetry, torso rotation and head-pelvis shift. Repeat cosmetic measurements were calculated from user-selected input on the Grasshopper graphical interface. InterClass-correlation (ICC) was used to determine intra- and inter-user reliability. Torso rotation and head-pelvis shift measurements showed excellent reliability (> 0.9), shoulder asymmetry measurements showed good to excellent reliability (> 0.7) and scapula and hip asymmetry measurements showed good to moderate reliability (> 0.5). The ICC results indicated that experience with AIS was not required to reliably measure shoulder asymmetry, torso rotation and head-pelvis shift, but was necessary for the other metrics. This new semi-automated workflow reliably characterises external torso deformity, reduces the dependence on manual anatomical landmarking, and does not require bulky/expensive equipment.


Assuntos
Cosméticos , Cifose , Escoliose , Criança , Humanos , Adolescente , Escoliose/cirurgia , Reprodutibilidade dos Testes , Tronco , Ombro
5.
J Orthop Translat ; 34: 73-84, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782964

RESUMO

Background: Bone defects after trauma, infection, or tumour resection present a challenge for patients and clinicians. To date, autologous bone graft (ABG) is the gold standard for bone regeneration. To address the limitations of ABG such as limited harvest volume as well as overly fast remodelling and resorption, a new treatment strategy of scaffold-guided bone regeneration (SGBR) was developed. In a well-characterized sheep model of large to extra-large tibial segmental defects, three-dimensional (3D) printed composite scaffolds have shown clinically relevant biocompatibility and osteoconductive capacity in SGBR strategies. Here, we report four challenging clinical cases with large complex posttraumatic long bone defects using patient-specific SGBR as a successful treatment. Methods: After giving informed consent computed tomography (CT) images were used to design patient-specific biodegradable medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP, 80:20 â€‹wt%) scaffolds. The CT scans were segmented using Materialise Mimics to produce a defect model and the scaffold parts were designed with Autodesk Meshmixer. Scaffold prototypes were 3D-printed to validate robust clinical handling and bone defect fit. The final scaffold design was additively manufactured under Food and Drug Administration (FDA) guidelines for patient-specific and custom-made implants by Osteopore International Pte Ltd. Results: Four patients (age: 23-42 years) with posttraumatic lower extremity large long bone defects (case 1: 4 â€‹cm distal femur, case 2: 10 â€‹cm tibia shaft, case 3: complex malunion femur, case 4: irregularly shaped defect distal tibia) are presented. After giving informed consent, the patients were treated surgically by implanting a custom-made mPCL-TCP scaffold loaded with ABG (case 2: additional application of recombinant human bone morphogenetic protein-2) harvested with the Reamer-Irrigator-Aspirator system (RIA, Synthes®). In all cases, the scaffolds matched the actual anatomical defect well and no perioperative adverse events were observed. Cases 1, 3 and 4 showed evidence of bony ingrowth into the large honeycomb pores (pores >2 â€‹mm) and fully interconnected scaffold architecture with indicative osseous bridges at the bony ends on the last radiographic follow-up (8-9 months after implantation). Comprehensive bone regeneration and full weight bearing were achieved in case 2 â€‹at follow-up 23 months after implantation. Conclusion: This study shows the bench to bedside translation of guided bone regeneration principles into scaffold-based bone tissue engineering. The scaffold design in SGBR should have a tissue-specific morphological signature which stimulates and directs the stages from the initial host response towards the full regeneration. Thereby, the scaffolds provide a physical niche with morphology and biomaterial properties that allow cell migration, proliferation, and formation of vascularized tissue in the first one to two months, followed by functional bone formation and the capacity for physiological bone remodelling. Great design flexibility of composite scaffolds to support the one to three-year bone regeneration was observed in four patients with complex long bone defects. The translational potential of this article: This study reports on the clinical efficacy of SGBR in the treatment of long bone defects. Moreover, it presents a comprehensive narrative of the rationale of this technology, highlighting its potential for bone regeneration treatment regimens in patients with any type of large and complex osseous defects.

6.
Front Bioeng Biotechnol ; 9: 638577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869154

RESUMO

Infection is the major cause of morbidity after breast implant surgery. Biodegradable medical-grade polycaprolactone (mPCL) scaffolds designed and rooted in evidence-based research offer a promising alternative to overcome the limitations of routinely used silicone implants for breast reconstruction. Nevertheless, as with any implant, biodegradable scaffolds are susceptible to bacterial infection too, especially as bacteria can rapidly colonize the biomaterial surface and form biofilms. Biofilm-related infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation of surrounding tissue. To date, no clinical solution that allows to efficiently prevent bacterial infection while promoting correct implant integration, has been developed. In this study, we demonstrated for the first time, to our knowledge that the physical immobilization of 1 and 5% human serum albumin (HSA) onto the surface of 3D printed macro- and microporous mPCL scaffolds, resulted in a reduction of Staphylococcus aureus colonization by 71.7 ± 13.6% and 54.3 ± 12.8%, respectively. Notably, when treatment of scaffolds with HSA was followed by tannic acid (TA) crosslinking/stabilization, uniform and stable coatings with improved antibacterial activity were obtained. The HSA/TA-coated scaffolds were shown to be stable when incubated at physiological conditions in cell culture media for 7 days. Moreover, they were capable of inhibiting the growth of S. aureus and Pseudomonas aeruginosa, two most commonly found bacteria in breast implant infections. Most importantly, 1%HSA/10%TA- and 5%HSA/1%TA-coated scaffolds were able to reduce S. aureus colonization on the mPCL surface, by 99.8 ± 0.1% and 98.8 ± 0.6%, respectively, in comparison to the non-coated control specimens. This system offers a new biomaterial strategy to effectively translate the prevention of biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.

7.
Polymers (Basel) ; 12(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105879

RESUMO

Electrospinning is a versatile fibre fabrication method with applications from textile to tissue engineering. Despite the appearance that the influencing parameters of electrospinning are fully understood, the effect of setup orientation has not been thoroughly investigated. With current burgeoning interest in modified and specialised electrospinning apparatus, it is timely to review the impact of this seldom-considered parameter. Apparatus configuration plays a major role in the morphology of the final product. The primary difference between spinning setups is the degree to which the electrical force and gravitational force contribute. Since gravity is much lower in magnitude when compared with the electrostatic force, it is thought to have no significant effect on the spinning process. But the shape of the Taylor cone, jet trajectory, fibre diameter, fibre diameter distribution, and overall spinning efficiency are all influenced by it. In this review paper, we discuss all these developments and more. Furthermore, because many research groups build their own electrospinning apparatus, it would be prudent to consider this aspect as particular orientations are more suitable for certain applications.

8.
Int J Artif Organs ; 41(11): 801-810, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30376770

RESUMO

INTRODUCTION:: This article explores the effect of horizontal and vertical setups on blend electrospinning with two polymers having vastly different properties - poly-ε-caprolactone and gelatin, and subsequent effect of the resulting microstructure on viability of seeded cells. METHODS:: Poly-ε-caprolactone and gelatin of varying blend concentrations were electrospun in horizontal and vertical setup orientations. NIH 3T3 fibroblasts were seeded on these scaffolds to assess cell viability changes in accordance with change in microstructure. RESULTS:: Blend electrospinning yielded a heterogeneous microstructure in the vertical orientation beyond a critical concentration of gelatin, and a homogeneous microstructure in the horizontal orientation. Unblended poly-ε-caprolactone electrospinning showed no significant difference in fibre diameter or pore size in either orientation. Mechanical testing showed reduced elasticity when poly-ε-caprolactone is blended with gelatin but an overall increase in tensile strength in the vertically spun samples. Cells on vertically spun samples showed significantly higher viabilities by day 7. DISCUSSION:: The composite microstructure obtained in vertically spun poly-ε-caprolactone -gelatin blends has a positive effect on viability of seeded cells. Such scaffolds can be considered suitable candidates for cardiovascular tissue engineering where cell infiltration is crucial.


Assuntos
Caproatos/química , Lactonas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células 3T3 , Animais , Proliferação de Células , Sobrevivência Celular , Fibroblastos , Gelatina/química , Camundongos , Poliésteres/química , Polímeros , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...