Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 201(2): 115-125, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211765

RESUMO

The effects of long-term low-dose X-ray irradiation on the outer root sheath (ORS) cells of C3H/He mice were investigated. Mice were irradiated with a regime of 100 mGy/day, 5 days/week, for 12 weeks (Group X) and the results obtained were compared to those in a non-irradiated control (Group C). Potential protection against ORS cells damage induced by this exposure was investigated by adding the stable nitroxide radical 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) at 1 mM to the drinking water of mice (Group X + TEMPOL). The results obtained were compared with Group C and a non-irradiated group treated with TEMPOL (Group C + TEMPOL). After fractionated X-ray irradiation, skin was removed and ORS cells were examined by hematoxylin and eosin staining and electron microscopy for an abnormal nuclear morphology and nuclear condensation changes. Fractionated X-irradiated mice had an increased number of ORS cells with an abnormal nuclear morphology as well as nuclear condensation changes. Sections were also immunohistochemically examined for the presence of TdT-mediated dUTP nick-end labeling (TUNEL), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), vascular endothelial growth factor (VEGF), nitrotyrosine, heme oxygenase 1 (HO-1), and protein gene product 9.5 (PGP 9.5). Significant increases were observed in TUNEL, 8-OHdG, and 4-HNE levels in ORS cells from mice in Group X. Electron microscopy also showed irregular shrunken ORS cells in Group X. These changes were prevented by the presence of TEMPOL in the drinking water of the irradiated mice. TEMPOL alone had no significant effects. These results suggest that fractionated doses of radiation induced oxidative damage in ORS cells; however, TEMPOL provided protection against this damage, possibly as a result of the rapid reaction of this nitroxide radical with the reactive oxidants generated by fractionated X-ray irradiation.


Assuntos
Água Potável , Óxidos de Nitrogênio , Marcadores de Spin , Animais , Camundongos , Raios X , Folículo Piloso , Fator A de Crescimento do Endotélio Vascular , Camundongos Endogâmicos C3H , Óxidos N-Cíclicos/farmacologia , Óxidos N-Cíclicos/uso terapêutico
2.
World J Microbiol Biotechnol ; 39(6): 157, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043017

RESUMO

The major safety risk of maize grain is contamination with mycotoxins. In this study, a maize-coating formulation containing freeze-dried culture filtrate of Streptomyces philanthi RL-1-178 (DCF RL-1-178) was developed and evaluated to prevent the growth of mycotoxins during maize grain storage. In vitro studies using confrontation tests on PDA plates indicated that S. philanthi RL-1-178 inhibited the growth of Aspergillus parasiticus TISTR 3276 (89.0%) and A. flavus PSRDC-4 (95.0%). The maize grain coating formulations containing the DCF RL-1-178 (0, 5, 10, and 15% (v/v)) and the polymer polyvinylpyrrolidone (PVP-K90, 4.0% (w/v)) were tested for their efficacy in In vitro and during 5 months storage. In In vitro assay, maize coating formular containing the optimum concentration (15.0%, v/v) of the DCF RL-1-178 exhibited 54.80% and 54.17% inhibition on the growth of A. parasiticus TISTR 3276 and A. flavus PSRDC-4 respectively. The inhibition was also illustrated by the microstructures of interactions between the coated maize grains with or without the DCF RL-1-178 and the fungal pathogens observed under microscope and SEM. Incorporating the DCF RL-1-178 or fungicidal Metalaxyl® into the polymer PVP-K90 maize grains coating resulted in the complete inhibition of the production of aflatoxin B1 (analysed by HPLC) by the two aflatoxigenic pathogens after 5 months storage at room temperature. However, the shelf-life was shortened to only 3 months during storage at room temperature with 90% relative humidity. Overall, the application of the 10-15% DCF RL-1-178 into the maize grain coating formular provides a new alternative measure to control the mycotoxins during storage for at least 5 months. The In vitro cell cytotoxicity study showed that a concentration of 15% (v/v) or 1000 µg/mL of the DCF RL-1-178 had a strong cytotoxic effect on Vero cells. These findings indicate that DCF RL-1-178 is a potential biofungicide for controlling mycotoxins contamination in maize seed storage for planting, but not maize grain storage for animal feed.


Assuntos
Micotoxinas , Streptomyces , Chlorocebus aethiops , Animais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Células Vero , Grão Comestível/microbiologia , Micotoxinas/metabolismo , Zea mays , Aspergillus flavus
3.
Biomolecules ; 13(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979380

RESUMO

It has been known that reactive oxygen species (ROS) are generated from the mitochondrial electron transport chain (ETC). Majima et al. proved that mitochondrial ROS (mtROS) caused apoptosis for the first time in 1998 (Majima et al. J Biol Chem, 1998). It is speculated that mtROS can move out of the mitochondria and initiate cellular signals in the nucleus. This paper aims to prove this phenomenon by assessing the change in the amount of manganese superoxide dismutase (MnSOD) by MnSOD transfection. Two cell lines of the same genetic background, of which generation of mtROS are different, i.e., the mtROS are more produced in RGK1, than in that of RGM1, were compared to analyze the cellular signals. The results of immunocytochemistry staining showed increase of Nrf2, Keap1, HO-1 and 2, MnSOD, GCL, GST, NQO1, GATA1, GATA3, GATA4, and GATA5 in RGK1 compared to those in RGM1. Transfection of human MnSOD in RGK1 cells showed a decrease of those signal proteins, suggesting mtROS play a role in cellular signals in nucleus.


Assuntos
Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Apoptose
4.
J Evid Based Integr Med ; 28: 2515690X221150526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617811

RESUMO

Malaria-associated cardiac injury has been reported to be the primary cause of death due to severe malaria. The discovery of substances showing a protective effect on cardiac injury during malaria infection is urgently needed. Hence, the purpose of this study was to evaluate the efficacy of Gymnema inodorum leaf extract (GIE) on cardiac function in mice infected with Plasmodium berghei. ICR mice were treated with 1 × 107 infected red blood cells of P. berghei ANKA (PbANKA), administered orally with GIE in 100, 250 and 500 mg/kg body weight of mice. Creatine phosphokinase (CPK) and echocardiography were carried out. It was found that CPK and heart-weight to body-weight (HW/BW) ratios were significantly higher in untreated mice than the healthy control. Moreover, impaired cardiac function in the untreated group was observed as indicated by changes in echocardiography. Interestingly, GIE exerted a protective effect on cardiac injury induced by PbANKA infection. Our results demonstrated that the parasitemia percentage, CPK, HW/BW ratio, and echocardiography in GIE treated mice were improved. However, there was no significant difference between GIE dosages. Therefore, GIE possessed a cardio-protective effect during malaria infection in mice.


Assuntos
Malária , Plasmodium berghei , Animais , Camundongos , Extratos Vegetais/farmacologia , Camundongos Endogâmicos ICR , Malária/tratamento farmacológico , Eritrócitos
5.
Front Immunol ; 14: 1275001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187378

RESUMO

Significance: This review discusses the coronavirus disease 2019 (COVID-19) pathophysiology in the context of diabetes and intracellular reactions by COVID-19, including mitochondrial oxidative stress storms, mitochondrial ROS storms, and long COVID. Recent advances: The long COVID is suffered in ~10% of the COVID-19 patients. Even the virus does not exist, the patients suffer the long COVID for even over a year, This disease could be a mitochondria dysregulation disease. Critical issues: Patients who recover from COVID-19 can develop new or persistent symptoms of multi-organ complications lasting weeks or months, called long COVID. The underlying mechanisms involved in the long COVID is still unclear. Once the symptoms of long COVID persist, they cause significant damage, leading to numerous, persistent symptoms. Future directions: A comprehensive map of the stages and pathogenetic mechanisms related to long COVID and effective drugs to treat and prevent it are required, which will aid the development of future long COVID treatments and symptom relief.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Espécies Reativas de Oxigênio , Mitocôndrias , Estresse Oxidativo
6.
PeerJ ; 10: e14468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523474

RESUMO

Garcinia mangostana L., also known as the mangosteen tree, is a native medicinal plant in Southeast Asia having a wide variety of pharmacologically active compounds, including xanthonoid mangostin. In this study, we examined the pharmacological activities of the selected semi-synthetic mangostin derivative, namely, amoebicidal activity, encystation inhibition, excystation activity, and removal capacity of adhesive Acanthamoeba from the surface of contact lens (CL). Among the three derivatives, C1 exhibited promising anti-Acanthamoeba activity against Acanthamoeba triangularis WU19001 trophozoites and cysts. SEM images displayed morphological changes in Acanthamoeba trophozoites, including the loss of acanthopodia, pore formation in the cell membrane, and membrane damage. In addition, the treated cyst was shrunken and adopted an irregular flat cyst shape. Under a fluorescence microscope, acridine orange and propidium iodide (AO/PI) staining revealed C1 induced condensation of cytoplasm and chromatin with the loss of cell volume in the treated trophozoites, while calcofluor white staining demonstrated the leakage of cell wall in treated cysts, leading to cell death. Interestingly, at the concentration ranges in which C1 showed the anti-Acanthamoeba effects (IC50 values ranging from 0.035-0.056 mg/mL), they were not toxic to Vero cells. C1 displayed the highest inhibitory effect on A. triangularis encystation at 1/16×MIC value (0.004 mg/mL). While C1 demonstrated the excystation activity at 1/128×MIC value with a high rate of 89.47%. Furthermore, C1 exhibited the removal capacity of adhesive Acanthamoeba from the surface of CL comparable with commercial multipurpose solutions (MPSs). Based on the results obtained, C1 may be a promising lead agent to develop a therapeutic for the treatment of Acanthamoeba infections and disinfectant solutions for CL.


Assuntos
Acanthamoeba , Lentes de Contato , Animais , Chlorocebus aethiops , Células Vero , Soluções para Lentes de Contato/farmacologia , Trofozoítos
7.
F1000Res ; 11: 1274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36936052

RESUMO

Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.


Assuntos
Acanthamoeba castellanii , Amebíase , Própole , Animais , Humanos , Própole/farmacologia , Própole/uso terapêutico , Simulação de Acoplamento Molecular , Amebíase/tratamento farmacológico , Trofozoítos , Flavonoides/farmacologia , Flavonoides/uso terapêutico
8.
F1000Res ; 11: 1235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38680230

RESUMO

Background: Ischemic heart disease is a leading cause of death in patients with cardiovascular disease. Natural products containing high antioxidant activity have been used as an alternative therapy to improve the living conditions of patients. In this study, we examine the protective effect of tamarind seed (TS) on myocardial hypoxic injury. Methods: The hypoxia model was mimicked by mineral oil overlayed on H9c2 cardiomyoblasts for 4 h. TS extract was pretreated and administered during the hypoxic condition. Radical scavenging activity of TS extract was measured and exhibited very potent antioxidant activities on 2,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Results: TS extract at a concentration of 10 µg/ml significantly reversed the effect of hypoxia-induced cell death and intracellular reactive oxygen species (ROS) production. We also observed hypoxia-induced over-expression of both inflammatory cytokine mRNA and activation of cellular apoptosis. Pretreatment of TS extract significantly reduced hypoxia-induced HIF-1a and pro-inflammatory cytokine production, IL-1b and IL-6. The Western blot analysis for apoptotic regulatory molecules, caspase 3, caspase 8 and Bax proteins, also showed hypoxia injury reversal by TS extract treatment. Conclusions: The results suggest that the anti-ischemic effect of TS extract protects against hypoxia-induced injury and has potential to be an effective alternative therapy for ischemic heart disease and oxidative-damage related disease.

9.
J Parasitol Res ; 2021: 1896997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552764

RESUMO

Malaria complications are the most frequent cause of mortality from parasite infection. This study is aimed at investigating the protective effect of Gymnema inodorum leaf extract (GIE) on hypoglycemia, dyslipidemia, liver damage, and acute kidney injury induced by Plasmodium berghei infection in mice. Groups of ICR mice were inoculated with 1 × 107 parasitized erythrocytes of P. berghei ANKA and administered orally by gavage with 100, 250, and 500 mg/kg of GIE for 4 consecutive days. Healthy and untreated controls were given distilled water, while the positive control was treated with 10 mg/kg of chloroquine. The results showed that malaria-associated hypoglycemia, dyslipidemia, liver damage, and acute kidney injury were found in the untreated mice as indicated by the significant alteration of biological markers. On the contrary, in 250 and 500 mg/kg of GIE-treated mice, the biological markers were normal compared to healthy controls. The highest protective effect was found at 500 mg/kg similar to the CQ-treated group. However, GIE at a dose of 100 mg/kg did not show protection during malaria infection. This study demonstrated that GIE presented potential therapeutic effects on PbANKA-induced hypoglycemia, dyslipidemia, liver damage, and acute kidney injury. The results obtained confirm the prospect of G. inodorum as an essential source of new antimalarial compounds and justify folkloric use as an alternative malarial treatment.

10.
Front Immunol ; 12: 704309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421910

RESUMO

CD147, a member of the immunoglobulin (Ig) superfamily, is widely expressed in several cell types. CD147 molecules have multiple cellular functions, such as migration, adhesion, invasion, energy metabolism and T cell activation. In particular, recent studies have demonstrated the potential application of CD147 as an effective therapeutic target for cancer, as well as autoimmune and inflammatory diseases. In this study, we elucidated the functional epitopes on CD147 extracellular domains in T cell regulation using specific monoclonal antibodies (mAbs). Upon T cell activation, the anti-CD147 domain 1 mAbs M6-1E9 and M6-1D4 and the anti-CD147 domain 2 mAb MEM-M6/6 significantly reduced surface expression of CD69 and CD25 and T cell proliferation. To investigate whether functional epitopes of CD147 are differentially expressed on distinct leukocyte subsets, PBMCs, monocyte-depleted PBMCs and purified T cells were activated in the presence of anti-CD147 mAbs. The mAb M6-1E9 inhibited T cell functions via activation of CD147 on monocytes with obligatory cell-cell contact. Engagement of the CD147 epitope by the M6-1E9 mAb downregulated CD80 and CD86 expression on monocytes and IL-2, TNF-α, IFN-γ and IL-17 production in T cells. In contrast, the mAb M6-1D4 inhibited T cell function via activation of CD147 on T cells by downregulating IL-2, TNF-α and IFN-γ. Herein, we demonstrated that certain epitopes of CD147, expressed on both monocytes and T cells, are involved in the regulation of T cell activation.


Assuntos
Proliferação de Células , Epitopos/imunologia , Fucosiltransferases/imunologia , Ativação Linfocitária , Monócitos/imunologia , Linfócitos T/imunologia , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Humanos
11.
J Immunoassay Immunochem ; 40(6): 590-604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31462139

RESUMO

Mycobacterial infection, leading to pulmonary disease, remains a world health problem. Clinical symptoms of pulmonary disease caused by Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) are very similar. A rapid method for the differentiation of MTBC and NTM infection is essential for appropriate therapy. In this study, we aim to establish an antibody-based biosensor system for the identification of MTBC and NTM infection. Monoclonal antibodies (mAbs) specific for Ag85B proteins of mycobacteria were generated and characterized. The generated anti-Ag85B mAb clones AM85B-5 and AM85B-8 reacted to Ag85B of Mycobacterium spp.; in contrast, clone AM85B-9 specifically reacted to Ag85B of MTBC. By employing the produced mAbs, single and sandwich antibody-based biosensors using bio-layer interferometry were established for determination of Ag85B proteins. The sandwich antibody-based biosensor system was demonstrated to be suitable for detection of Ag85B protein and identification of MTBC and NTM. Using anti-Ag85B mAbs AM85B-8 and AM85B-9 as immobilized antibodies on sensor chips and using mAb AM85B-5 as secondary antibody, the established sandwich antibody-based biosensor could discriminate MTBC and NTM. The developed biosensor system can be used for culture confirmation of mycobacteria and speciation to MTBC and NTM.


Assuntos
Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais , Mycobacterium tuberculosis/imunologia , Micobactérias não Tuberculosas/imunologia , Reações Antígeno-Anticorpo , Humanos , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/imunologia
12.
Cardiovasc Res ; 115(1): 94-106, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016400

RESUMO

Aims: Heart failure (HF) produces left atrial (LA)-selective fibrosis and promotes atrial fibrillation. HF also causes adrenergic activation, which contributes to remodelling via a variety of signalling molecules, including the exchange protein activated by cAMP (Epac). Here, we evaluate the effects of Epac1-signalling on LA fibroblast (FB) function and its potential role in HF-related atrial remodelling. Methods and results: HF was induced in adult male mongrel dogs by ventricular tachypacing (VTP). Epac1-expression decreased in LA-FBs within 12 h (-3.9-fold) of VTP onset. The selective Epac activator, 8-pCPT (50 µM) reduced, whereas the Epac blocker ESI-09 (1 µM) enhanced, collagen expression in LA-FBs. Norepinephrine (1 µM) decreased Epac1-expression, an effect blocked by prazosin, and increased FB collagen production. The ß-adrenoceptor (AR) agonist isoproterenol increased Epac1 expression, an effect antagonized by ICI (ß2-AR-blocker), but not by CGP (ß1-AR-blocker). ß-AR-activation with isoproterenol decreased collagen expression, an effect mimicked by the ß2-AR-agonist salbutamol and blocked by the Epac1-antagonist ESI-09. Transforming growth factor-ß1, known to be activated in HF, suppressed Epac1 expression, an effect blocked by the Smad3-inhibitor SIS3. To evaluate effects on atrial fibrosis in vivo, mice subjected to myocardial infarction (MI) received the Epac-activator Sp-8-pCPT or vehicle for 2 weeks post-MI; Sp-8-pCPT diminished LA fibrosis and attenuated cardiac dysfunction. Conclusions: HF reduces LA-FB Epac1 expression. Adrenergic activation has complex effects on FBs, with α-AR-activation suppressing Epac1-expression and increasing collagen expression, and ß2-AR-activation having opposite effects. Epac1-activation reduces cardiac dysfunction and LA fibrosis post-MI. Thus, Epac1 signalling may be a novel target for the prevention of profibrillatory cardiac remodelling.


Assuntos
Fibrilação Atrial/metabolismo , Função do Átrio Esquerdo , Remodelamento Atrial , Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Átrios do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Cães , Fibroblastos/patologia , Fibrose , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
13.
Cell Immunol ; 335: 51-58, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396687

RESUMO

CD99, a leukocyte surface glycoprotein, has been implicated in many cellular processes including cell adhesion, cell migration and T cell activation. Our previous study demonstrated the anti-CD99 monoclonal antibody (mAb) clone MT99/3 inhibited T cell activation; however, the mechanism is unclear. In this study, we demonstrated that CD99 expressed on monocytes played a role in the inhibition of T cell activation. Anti-CD99 mAb MT99/3 downregulated the expression of costimulatory molecule CD86, but upregulated IL-6, IL-10 and TNF-α production by monocytes. The inhibitory effect of mAb MT99/3 required cell to cell contact between monocytes and lymphocytes. The soluble mediators produced by monocytes alone were insufficient to induce hypo-function of T lymphocytes. In summary, we demonstrated that ligation of CD99 on monocytes by anti-CD99 mAb MT99/3 could mediate T cell hypo-responsiveness. These findings provide the first evidence of the role of CD99 on monocytes that contributes to T cell activation.


Assuntos
Antígeno 12E7/imunologia , Anticorpos Monoclonais/farmacologia , Monócitos/imunologia , Linfócitos T/imunologia , Antígeno 12E7/metabolismo , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Adesão Celular , Moléculas de Adesão Celular , Movimento Celular , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Voluntários Saudáveis , Humanos , Interleucina-10/imunologia , Interleucina-6/imunologia , Leucócitos/imunologia , Ativação Linfocitária , Glicoproteínas de Membrana , Monócitos/efeitos dos fármacos , Cultura Primária de Células , Linfócitos T/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia
14.
PLoS One ; 13(6): e0199717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940031

RESUMO

T cells play a crucial role in orchestrating body immune responses. T cell hyperfunction, however, leads to inflammation and induction of autoimmune diseases. Understanding of T cell regulation mechanisms and successful modulation of T cell responses is beneficial in treatment of disease associated to T cell hyperresponsiveness. Our previous study indicated that monoclonal antibody (mAb) P-3E10, a mAb to Na, K ATPase ß3 subunit, inhibited anti-CD3-induced PBMC proliferation. In the current study, we further investigated the mechanism of mAb P-3E10 in the induction of T cell hypofunction. We demonstrated that mAb P-3E10 decreased T cell proliferation and Th1, Th2 and Th17 cytokine production. Monocytes were the cells playing a key role in mediation of mAb P-3E10 induced T cell hypofunction. The inhibition of T cell activation by mAb P-3E10 required cell contact between monocytes and T cells. The mAb P-3E10 induced the down-expression level of MHC class II and CD86 and increased IL-6, IL-10 and TNF-α production of monocytes. We concluded that ligation of the Na, K ATPase ß3 subunit on monocytes by mAb P-3E10 arbitrated T cell hypofunction. This mAb might be a promising novel immunotherapeutic antibody for the treatment of hyperresponsive T cell associated diseases.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Citocinas/imunologia , Monócitos/imunologia , ATPase Trocadora de Sódio-Potássio , Linfócitos T Auxiliares-Indutores/imunologia , Anticorpos Monoclonais Murinos/imunologia , Antígeno B7-2/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Monócitos/citologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Células THP-1
15.
J Am Heart Assoc ; 6(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381466

RESUMO

BACKGROUND: Cardiac fibroblasts play important functional and pathophysiological roles. Intracellular ("intracrine") angiotensin-II (Ang-II) signaling regulates intercellular communication, excitability, and gene expression in cardiomyocytes; however, the existence and role of intracrine Ang-II signaling in cardiac fibroblasts is unstudied. Here, we evaluated the localization of Ang-II receptors on atrial fibroblast nuclei and associated intracrine effects of potential functional significance. METHODS AND RESULTS: Immunoblots of subcellular protein-fractions from isolated canine atrial fibroblasts indicated the presence of nuclear Ang-II type 1 receptors (AT1Rs) and Ang-II type 2 receptors (AT2Rs). Fluorescein isothiocyanate-Ang-II binding displaceable by AT1R- and AT2R-blockers was present on isolated fibroblast nuclei. G-protein subunits, including Gαq/11, Gαi/3, and Gß, were observed in purified fibroblast nuclear fractions by immunoblotting and intact-fibroblast nuclei by confocal immunocytofluorescence microscopy. Nuclear AT1Rs and AT2Rs regulated de novo RNA synthesis ([α32P]UTP incorporation) via IP3R- and NO-dependent pathways, respectively. In intact cultured fibroblasts, intracellular Ang-II release by photolysis of a membrane-permeable caged Ang-II analog led to IP3R-dependent nucleoplasmic Ca2+-liberation, with IP3R3 being the predominant nuclear isoform. Intracellular Ang-II regulated fibroblast proliferation ([3H]thymidine incorporation), collagen-1A1 mRNA-expression, and collagen secretion. Intracellular Ang-II and nuclear AT1R protein levels were significantly increased in a heart failure model in which atrial fibrosis underlies atrial fibrillation. CONCLUSIONS: Fibroblast nuclei possess AT1R and AT2R binding sites that are coupled to intranuclear Ca2+-mobilization and NO liberation, respectively. Intracellular Ang-II signaling regulates fibroblast proliferation, collagen gene expression, and collagen secretion. Heart failure upregulates Ang-II intracrine signaling-components in atrial fibroblasts. These results show for the first time that nuclear angiotensin-II receptor activation and intracrine Ang-II signaling control fibroblast function and may have pathophysiological significance.


Assuntos
Angiotensina II/fisiologia , Proliferação de Células , Colágeno/metabolismo , Fibroblastos/metabolismo , Átrios do Coração/citologia , Insuficiência Cardíaca/metabolismo , Transcrição Gênica , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Núcleo Celular/metabolismo , Colágeno Tipo I/genética , Modelos Animais de Doenças , Cães , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Immunoblotting , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microscopia de Fluorescência , Óxido Nítrico/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo
16.
Cardiovasc Res ; 113(3): 310-320, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158495

RESUMO

AIMS: Left-atrial (LA) fibrosis is an important feature of many atrial fibrillation (AF) substrates. The JAK-STAT system contributes to cardiac remodelling, but its role in AF is unknown. Here we investigated JAK-STAT changes in an AF-model and their potential contributions to LA-fibrosis. METHODS AND RESULTS: LA-remodelling was studied in dogs with heart failure (HF) induced by ventricular tachypacing (VTP, 240 bpm), and in mice with left-ventricular (LV) dysfunction due to myocardial infarction (MI). The selective STAT-3 inhibitor S3I-201 was administered to fibroblasts in vitro or mice in vivo (10 mg/kg/d, osmotic mini-pump). HF-dogs developed LA-selective fibrosis and AF-susceptibility at 1-week VTP. The mRNA-expression of platelet-derived growth factor (PDGF, a JAK-STAT activator) isoforms A, C and D, as well as JAK2, increased in LA fibroblasts from 1-week VTP. HF upregulated protein-expression of PDGF-receptor-ß and phosphorylated (activated) signal transducer and activator of transcription 3 (STAT3) in LA. PDGF-AB stimulation of LA fibroblasts increased PDGFR-α, STAT3 and phosphorylated-STAT3 expression, as well as collagen-1 and fibronectin-1 protein secretion (by 1.6- to 20-fold), with smaller changes in LV fibroblasts. Phosphorylated-STAT3 and collagen upregulation were suppressed by the JAK2 inhibitor AG-490, PDGF receptor inhibitor AG1296 and STAT3-inhibitor SI3-201. In vivo S3I-201 treatment of MI-mice attenuated LA-fibrosis, LA-dilation and P-wave duration changes versus vehicle-control. CONCLUSIONS: HF activates the LA JAK-STAT system and enhances PDGF-signalling. JAK-STAT inhibition reduces the profibrotic effects of PDGF stimulation on canine fibroblasts in vitro while attenuating in vivo LA-fibrosis and remodelling in post-MI mice, suggesting that the JAK/STAT pathway contributes to LA-fibrogenesis and might be a potential target for LA-fibrosis prevention.

17.
Pharm Biol ; 53(12): 1831-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25880145

RESUMO

CONTEXT: Cardiac cell death and fatal arrhythmias during myocardial ischemia/reperfusion (I/R) can be reduced by p38 MAPK inhibition. However, the effects of p38 MAPK inhibition on cardiac mitochondria have not been investigated. OBJECTIVE: We tested the hypothesis that p38 MAPK inhibition at different times during I/R protects cardiac mitochondrial functions. MATERIALS AND METHODS: Adult Wistar rats were subjected to 30 min of left anterior descending coronary artery (LAD) occlusion, followed by 120 min of reperfusion. A 2 mg/kg bolus infusion of p38 MAPK inhibitor, SB203580, was given before or during ischemia, or at reperfusion. Mitochondrial function and ultrastructure were assessed and Western blots were performed. RESULTS: Administration of SB203580 at any time point of I/R significantly attenuated the mitochondrial ultrastructure change, mitochondrial swelling, by increasing the absorbance at 540 nm (I/R control 0.42 ± 0.03; pretreatment 0.58 ± 0.04; during ischemia 0.49 ± 0.02; at reperfusion 0.51 ± 0.02, p < 0.05), similar to reactive oxygen species (ROS) generation (I/R control 1300 ± 48; pretreatment 1150 ± 30; during ischemia 1000 ± 50; at reperfusion 1050 ± 55, p < 0.05). Only SB203580 given before or during ischemia attenuated mitochondrial membrane depolarization (I/R control 0.78 ± 0.04; pretreatment 1.02 ± 0.03; during ischemia 1.05 ± 0.12, p < 0.05). In addition, pre-treatment of SB203580 significantly reduced the phosphorylation of p53, CREB, Bax, cytochrome c, and cleaved caspase 3. DISCUSSION AND CONCLUSION: The results from this study showed for the first time that p38 MAPK inhibition protects mitochondria from I/R injury.


Assuntos
Cardiotônicos/farmacologia , Imidazóis/farmacologia , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Cardiotônicos/uso terapêutico , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Imidazóis/uso terapêutico , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Heart Rhythm ; 11(12): 2278-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25093803

RESUMO

BACKGROUND: We previously reported that vagus nerve stimulation (VNS) applied immediately at the onset of cardiac ischemia provides cardioprotection against cardiac ischemic-reperfusion (I/R) injury. OBJECTIVE: This study aimed to determine whether VNS applied during ischemia or at the onset of reperfusion exerts differential cardioprotection against cardiac I/R injury. METHODS: Twenty-eight swine (25-30 kg) were randomized into 4 groups: Control (sham-operated, no VNS), VNS-ischemia (VNS applied during ischemia), VNS-reperfusion (VNS applied during reperfusion), and VNS-ischemia+atropine (VNS applied during ischemia with 1 mg/kg atropine administration). Ischemia was induced by left anterior descending (LAD) coronary artery occlusion for 60 minutes, followed by 120 minutes of reperfusion. VNS was applied either 30 minutes after LAD coronary artery occlusion or at the onset of reperfusion and continued until the end of reperfusion. Cardiac function, infarct size, myocardial levels of connexin 43, cytochrome c, tumor necrosis factor α, and interleukin 4, and cardiac mitochondrial function were determined. RESULTS: VNS applied 30 minutes after LAD coronary artery occlusion, but not at reperfusion, markedly reduced ventricular fibrillation incidence and infarct size (~59%), improved cardiac function; attenuated cardiac mitochondrial reactive oxygen species production, depolarization, swelling, and cytochrome c release; and increased the amount of phosphorylated connexin 43 and interleukin 4 as compared with the Control group. These beneficial effects of VNS were abolished by atropine. CONCLUSION: VNS could provide significant cardioprotective effects even when initiated later during ischemia, but was not effective after reperfusion. These findings indicate the importance of timing of VNS initiation and warrant the potential clinical application of VNS in protecting myocardium at risk of I/R injury.


Assuntos
Mitocôndrias Cardíacas/patologia , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estimulação do Nervo Vago/métodos , Função Ventricular Esquerda/fisiologia , Animais , Atropina/farmacologia , Modelos Animais de Doenças , Eletrocardiografia/métodos , Mitocôndrias Cardíacas/ultraestrutura , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Isquemia Miocárdica/fisiopatologia , Distribuição Aleatória , Valores de Referência , Medição de Risco , Suínos , Resultado do Tratamento
20.
Heart Rhythm ; 10(11): 1700-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23933295

RESUMO

BACKGROUND: Right cervical vagus nerve stimulation (VNS) provides cardioprotective effects against acute ischemia-reperfusion injury in small animals. However, inconsistent findings have been reported. OBJECTIVE: To determine whether low-amplitude, left cervical VNS applied either intermittently or continuously imparts cardioprotection against acute ischemia-reperfusion injury. METHODS: Thirty-two isoflurane-anesthetized swine (25-30 kg) were randomized into 4 groups: control (sham operated, no VNS), continuous-VNS (C-VNS; 3.5 mA, 20 Hz), intermittent-VNS (I-VNS; continuously recurring cycles of 21-second ON, 30-second OFF), and I-VNS + atropine (1 mg/kg). Left cervical VNS was applied immediately after left anterior descending artery occlusion (60 minutes) and continued until the end of reperfusion (120 minutes). The ischemic and nonischemic myocardium was harvested for cardiac mitochondrial function assessment. RESULTS: VNS significantly reduced infarct size, improved ventricular function, decreased ventricular fibrillation episodes, and attenuated cardiac mitochondrial reactive oxygen species production, depolarization, and swelling, compared with the control group. However, I-VNS produced the most profound cardioprotective effects, particularly infarct size reduction and decreased ventricular fibrillation episodes, compared to both I-VNS + atropine and C-VNS. These beneficial effects of VNS were abolished by atropine. CONCLUSIONS: During ischemia-reperfusion injury, both C-VNS and I-VNS provide significant cardioprotective effects compared with I-VNS + atropine. These beneficial effects were abolished by muscarinic blockade, suggesting the importance of muscarinic receptor modulation during VNS. The protective effects of VNS could be due to its protection of mitochondrial function during ischemia-reperfusion.


Assuntos
Mitocôndrias Cardíacas/fisiologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/complicações , Estimulação do Nervo Vago/métodos , Disfunção Ventricular Esquerda/terapia , Animais , Modelos Animais de Doenças , Eletrocardiografia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Suínos , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...