Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405892

RESUMO

Autophagic mechanisms that maintain nuclear envelope homeostasis are bulwarks to aging and disease. By leveraging 4D lattice light sheet microscopy and correlative light and electron tomography, we define a quantitative and ultrastructural timeline of a nuclear macroautophagy (nucleophagy) pathway in yeast. Nucleophagy initiates with a rapid local accumulation of the nuclear cargo adaptor Atg39 at the nuclear envelope adjacent to the nucleus-vacuole junction and is delivered to the vacuole in ~300 seconds through an autophagosome intermediate. Mechanistically, nucleophagy incorporates two consecutive and genetically defined membrane fission steps: inner nuclear membrane (INM) fission generates a lumenal vesicle in the perinuclear space followed by outer nuclear membrane (ONM) fission to liberate a double membraned vesicle to the cytosol. ONM fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin-like protein1 (Dnm1), which is recruited to sites of Atg39 accumulation at the nuclear envelope. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodeling.

2.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32211895

RESUMO

NUP188 encodes a scaffold component of the nuclear pore complex (NPC) and has been implicated as a congenital heart disease gene through an ill-defined function at centrioles. Here, we explore the mechanisms that physically and functionally segregate Nup188 between the pericentriolar material (PCM) and NPCs. Pulse-chase fluorescent labeling indicates that Nup188 populates centrosomes with newly synthesized protein that does not exchange with NPCs even after mitotic NPC breakdown. In addition, the steady-state levels of Nup188 are controlled by the sensitivity of the PCM pool, but not the NPC pool, to proteasomal degradation. Proximity-labeling and super-resolution microscopy show that Nup188 is vicinal to the inner core of the interphase centrosome. Consistent with this, we demonstrate direct binding between Nup188 and Cep152. We further show that Nup188 functions in centriole duplication at or upstream of Sas6 loading. Together, our data establish Nup188 as a component of PCM needed to duplicate the centriole with implications for congenital heart disease mechanisms.


Assuntos
Centríolos/metabolismo , Centrossomo/metabolismo , Mitose , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Células HeLa , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica , Proteólise , Transdução de Sinais , Fatores de Tempo
3.
J Theor Biol ; 244(1): 154-66, 2007 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-16962141

RESUMO

A mathematical framework for modeling biological cells from a physicochemical perspective is described. Cells modeled within this framework consist of at least two regions, including a cytosolic volume encapsulated by a membrane surface. The cytosol is viewed as a well-stirred chemical reactor capable of changing volume while the membrane is assumed to be an oriented 2-D surface capable of changing surface area. Two physical properties of the cell, namely volume and surface area, are determined by (and determine) the reaction dynamics generated from a set of chemical reactions designed to be occurring in the cell. This framework allows the modeling of complex cellular behaviors, including self-replication. This capability is illustrated by constructing two self-replicating prototypical whole-cell models. One protocell was designed to be of minimal complexity; the other to incorporate a previously reported well-known mechanism of the eukaryotic cell cycle. In both cases, self-replicative behavior was achieved by seeking stable physically possible oscillations in concentrations and surface-to-volume ratio, and by synchronizing the period of such oscillations to the doubling of cytosolic volume and membrane surface area. Rather than being enforced externally or artificially, growth and division occur naturally as a consequence of the assumed chemical mechanism operating within the framework.


Assuntos
Fenômenos Fisiológicos Celulares , Modelos Biológicos , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Tamanho Celular , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA