Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 110: 16-27, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748019

RESUMO

This paper reports the thermoluminescence properties of Eu(3+) doped different host matrix phosphors (SrY2O4 and Y4Al2O9). The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the crystallite size calculated by Scherer's formula. The prepared phosphor characterized by Scanning Electron Microscopic (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray analysis (EDX), thermoluminescence (TL) and Transmission Electron Microscopic (TEM) techniques. The prepared phosphors for different concentration of Eu(3+) ions were examined by TL glow curve for UV, beta and gamma irradiation. The UV 254nm source used for UV irradiation, Sr(90) source was used for beta irradiation and Co(60) source used for gamma irradiation. SrY2O4:Eu(3+)and Y4Al2O9:Eu(3+) phosphors which shows both higher temperature peaks and lower temperature peaks for UV, beta and gamma irradiation. Here UV irradiated sample shows the formation of shallow trap (surface trapping) and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma, beta and UV exposure on TL studies was also examined and it shows linear response with dose which indicate that the samples may be useful for TL dosimetry. Formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors is discussed in this paper.


Assuntos
Európio/química , Európio/efeitos da radiação , Luminescência , Óxido de Alumínio , Partículas beta , Raios gama , Cinética , Medições Luminescentes , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio , Dosimetria Termoluminescente , Raios Ultravioleta , Difração de Raios X , Ítrio
2.
Luminescence ; 30(8): 1201-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25810371

RESUMO

This paper reports the synthesis and characterization of Er(3+)-doped CeO2 phosphor with variable concentrations of erbium. The sample was synthesized using a solid-state reaction method, which is useful for the large-scale production of phosphors and is also eco-friendly. The prepared sample was characterized using an X-ray diffraction (XRD) technique. The XRD pattern confirmed that sample has the pure cubic fluorite crystal structure of CeO2. The crystallite size of the prepared phosphor was determined by Scherer's formula and the crystallite size giving an intense XRD peak is 40.06 nm. The surface morphology of the phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). From the FEGSEM image, good surface morphology with some agglomerates was found. The functional group in the prepared sample was analysed by Fourier transform infrared (FTIR) spectroscopy. All samples prepared with variable concentrations of Er(3+) (0.1-2 mol%) were studied by photoluminescence analysis and it was found that the excitation spectra of the prepared phosphor shows broad excitation centred at 251 nm. Emission spectra at different concentrations of Er(3+) show strong peaks at 413 and 470 nm and a weaker peak at 594 nm. The dominant peaks at 413 and 470 nm are caused by the allowed electronic transition (4)S3/2 → (4)I15/2 and the weaker transition at 594 nm is due to the transition (4)F9/2 → (4)I15/2. Spectrophotometric determinations of peaks were evaluated using the Commission Internationale de I'Eclairage (CIE) technique. The emission spectra were also observed using an infrared (IR) laser 980 nm source, and three distinct peaks were found in the IR region at 848, 870 and 980 nm. The prepared phosphor has utility for application in display devices.


Assuntos
Cério/química , Substâncias Luminescentes/química , Európio/química , Luminescência , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...