Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700289

RESUMO

The tunable properties of stimuli-responsive copolymers or hydrogels enable their application in different fields such as biomedical engineering, tissue engineering, or even drug release. Here we introduce a new PNIPAM-based triblock copolymer material comprising a controlled amount of a novel hydrophobic crosslinker 2,4'-diacryloyloxy benzophenone (DABP) and acrylic acid (AAc) to achieve lower critical solution temperature (LCST) between ambient and body temperatures. The dual stimuli-responsive p(NIPAM-co-DABP-co-AAc) triblock copolymer material and hydrogel were synthesized, and their temperature and pH-responsive behaviors were systematically investigated. The hydrogel exhibited excellent temperature and pH-responsive properties with an LCST of around 30 °C. Moreover, the synthesized copolymer has been demonstrated to be nontoxic both in vitro and in vivo. When the hydrogel was preloaded with the model drug 5-fluorouracil (5-FU), the designed hydrogel released the drug in a temperature and pH-controlled fashion. It was observed that the prepared hydrogel has the ability to entrap 5-FU, and the loading is more than 85%. In the case of temperature-controlled release, we observed almost complete release of 5-FU at lower temperatures and sustained release behavior at higher temperatures. In addition, the hydrogel matrix was able to retard the release of 5-FU in an acidic environment and selectively release 5-FU in a basic environment. By realizing how the hydrogel properties influence the release of drugs from preloaded hydrogels, it is possible to design new materials with myriad applications in the drug delivery field.

2.
Pharmaceutics ; 15(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111753

RESUMO

Four-dimensional (4D) printing, as a newly evolving technology to formulate drug delivery devices, displays distinctive advantages that can autonomously monitor drug release according to the actual physiological circumstances. In this work, we reported our earlier synthesized novel thermo-responsive self-folding feedstock for possible SSE-mediated 3D printing to form a 4D printed construct deploying machine learning (ML) modeling to determine its shape recovery behavior followed by its potential drug delivery applications. Therefore, in the present study, we converted our earlier synthesized temperature-responsive self-folding (both placebo and drug-loaded) feedstock into 4D printed constructs using SSE-mediated 3D printing technology. Further, the shape memory programming of the printed 4D construct was achieved at 50 °C followed by shape fixation at 4 °C. The shape recovery was achieved at 37 °C, and the obtained data were used to train and ML algorithms for batch optimization. The optimized batch showed a shape recovery ratio of 97.41. Further, the optimized batch was used for the drug delivery application using paracetamol (PCM) as a model drug. The % entrapment efficiency of the PCM-loaded 4D construct was found to be 98.11 ± 1.5%. In addition, the in vitro release of PCM from this programmed 4D printed construct confirms temperature-responsive shrinkage/swelling properties via releasing almost 100% ± 4.19 of PCM within 4.0 h. at gastric pH medium. In summary, the proposed 4D printing strategy pioneers the paradigm that can independently control drug release with respect to the actual physiological environment.

3.
Drug Deliv Transl Res ; 13(5): 1183-1194, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776385

RESUMO

Pharmacotherapy has become more focused on the personalized treatment of patients with various diseases. This field of pharmacology and pharmacogenomics focuses on developing drug delivery systems designed to address the unique characteristics of individual patients. Three-dimensional printing technology can be used to fabricate personalized drug delivery systems with desired release properties according to patient needs. Norfloxacin (NOR)-loaded micropellets (MPs) were fabricated and filled inside a stereolithography (SLA) 3D printing technology-mediated hollow capsular device in accordance with a standard size of 09 (8.4 mm length × 2.70 mm diameter). The prepared 3D-printed hollow capsular device filled with pristine NOR and NOR-loaded MPs were characterized in terms of both in vitro and in vivo means. MPs with the particle size distribution of 1540.0 ± 26 µm showed 95.63 ± 2.0% NOR content with pellet-shaped surface morphology. The in vitro release profile showed an initial lag phase of approximately 30 min, followed by the sustained release of NOR from MPs from the 3D-printed hollow capsular device. The pharmacokinetic profile showed prolonged Tmax, AUC, and evidence of good RBA of NOR compared to pure NOR after a single oral administration in the experimental animal model. The overall results confirm the feasibility of SLA-mediated 3D printing technology for preparing customized solid oral unit dosage carriers that can be filled with pure NOR- and NOR-loaded MPs with controlled-release delivery features.


Assuntos
Norfloxacino , Tecnologia Farmacêutica , Animais , Preparações de Ação Retardada , Tecnologia Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Impressão Tridimensional , Liberação Controlada de Fármacos , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...