Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299791

RESUMO

Motor imagery (MI) is a technique of imagining the performance of a motor task without actually using the muscles. When employed in a brain-computer interface (BCI) supported by electroencephalographic (EEG) sensors, it can be used as a successful method of human-computer interaction. In this paper, the performance of six different classifiers, namely linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), and three classifiers from the family of convolutional neural networks (CNN), is evaluated using EEG MI datasets. The study investigates the effectiveness of these classifiers on MI, guided by a static visual cue, dynamic visual guidance, and a combination of dynamic visual and vibrotactile (somatosensory) guidance. The effect of filtering passband during data preprocessing was also investigated. The results show that the ResNet-based CNN significantly outperforms the competing classifiers on both vibrotactile and visually guided data when detecting different directions of MI. Preprocessing the data using low-frequency signal features proves to be a better solution to achieve higher classification accuracy. It has also been shown that vibrotactile guidance has a significant impact on classification accuracy, with the associated improvement particularly evident for architecturally simpler classifiers. These findings have important implications for the development of EEG-based BCIs, as they provide valuable insight into the suitability of different classifiers for different contexts of use.


Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia , Humanos , Redes Neurais de Computação , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , Algoritmos
2.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236238

RESUMO

Gait is a unique biometric trait with several useful properties. It can be recognized remotely and without the cooperation of the individual, with low-resolution cameras, and it is difficult to obscure. Therefore, it is suitable for crime investigation, surveillance, and access control. Existing approaches for gait recognition generally belong to the supervised learning domain, where all samples in the dataset are annotated. In the real world, annotation is often expensive and time-consuming. Moreover, convolutional neural networks (CNNs) have dominated the field of gait recognition for many years and have been extensively researched, while other recent methods such as vision transformer (ViT) remain unexplored. In this manuscript, we propose a self-supervised learning (SSL) approach for pretraining the feature extractor using the DINO model to automatically learn useful gait features with the vision transformer architecture. The feature extractor is then used for extracting gait features on which the fully connected neural network classifier is trained using the supervised approach. Experiments on CASIA-B and OU-MVLP gait datasets show the effectiveness of the proposed approach.


Assuntos
Marcha , Redes Neurais de Computação , Biometria , Endoscopia , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...