Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 77(6): 2729-42, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22372634

RESUMO

To facilitate precatalyst recovery and reuse, we have developed a fluorous, oxime-based palladacycle 1 and demonstrated that it is a very efficient and versatile precatalyst for a wide range of carbon-carbon bond formation reactions (Suzuki-Miyaura, Sonogashira, Stille, Heck, Glaser-type, and Kumada) in either aqueous or organic medium under microwave irradiation. Palladacycle 1 could be recovered through F-SPE in various coupling reactions with recovery ranging from 84 to 95% for the first cycle. Inductively coupled plasma optical emission spectrometry (ICP-OES) analyses of the Pd content in the crude product from each class of transformation indicated extremely low levels of leaching and the palladacycle could be reused four to five times without significant loss of activity.

2.
Tetrahedron ; 67(43): 8353-8359, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32362691

RESUMO

A thermally stable polymer-supported oxidant has been developed. Polymer-supported 2-benzenesulfonyl-3-(4-nitrophenyl)oxaziridine was applied to microwave-assisted reactions that occurred at high temperatures and was shown to oxidize alkenes, silyl enol ethers, and pyridines to the corresponding epoxides and pyridine N-oxides in excellent to good yields and with much shorter reaction times. It also enabled tetrahydrobenzimidazoles to be oxidatively rearranged to spiro fused 5-imidazolones in a more efficient manner. Recycling of the polymer-supported oxidant is also possible with minimal loss of activity after several reoxidations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA