Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(15): 7582-7593, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38506088

RESUMO

Chemically synthesized metal nanoparticles (MNPs) have been widely used as surface-enhanced Raman spectroscopy (SERS) substrates for monitoring catalytic reactions. In some applications, however, the SERS MNPs, besides being plasmonically active, can also be catalytically active and result in Raman signals from undesired side products. The MNPs are typically insulated with a thin (∼3 nm), in principle pin-hole-free shell to prevent this. This approach, which is known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), offers many advantages, such as better thermal and chemical stability of the plasmonic nanoparticle. However, having both a high enhancement factor and ensuring that the shell is pin-hole-free is challenging because there is a trade-off between the two when considering the shell thickness. So far in the literature, shell insulation has been successfully applied only to chemically synthesized MNPs. In this work, we alternatively study different combinations of chemical synthesis (bottom-up) and lithographic (top-down) routes to obtain shell-isolated plasmonic nanostructures that offer chemical sensing capabilities. The three approaches we study in this work include (1) chemically synthesized MNPs + chemical shell, (2) lithographic substrate + chemical shell, and (3) lithographic substrate + atomic layer deposition (ALD) shell. We find that ALD allows us to fabricate controllable and reproducible pin-hole-free shells. We showcase the ability to fabricate lithographic SHINER substrates which report an enhancement factor of 7.5 × 103 ± 17% for our gold nanodot substrates coated with a 2.8 nm aluminium oxide shell. Lastly, by introducing a gold etchant solution to our fabricated SHINER substrate, we verified that the shells fabricated with ALD are truly pin-hole-free.

2.
Mater Today Bio ; 24: 100897, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169974

RESUMO

In vitro cellular models denote a crucial part of drug discovery programs as they aid in identifying successful drug candidates based on their initial efficacy and potency. While tremendous headway has been achieved in improving 2D and 3D culture techniques, there is still a need for physiologically relevant systems that can mimic or alter cellular responses without the addition of external biochemical stimuli. A way forward to alter cellular responses is using physical cues, like 3D topographical inorganic substrates, to differentiate macrophage-like cells. Herein, protein secretion and gene expression markers for various macrophage subsets cultivated on a 3D topographical substrate are investigated. The results show that macrophages differentiate into anti-inflammatory M2-type macrophages, secreting increased IL-10 levels compared to the controls. Remarkably, these macrophage cells are differentiated into the M2d subset, making up the main component of tumour-associated macrophages (TAMs), as measured by upregulated Il-10 and Vegf mRNA. M2d subset differentiation is attributed to the topographical substrates with 3D fractal-like geometries arrayed over the surface, else primarily achieved by tumour-associated factors in vivo. From a broad perspective, this work paves the way for implementing 3D topographical inorganic surfaces for drug discovery programs, harnessing the advantages of in vitro assays without external stimulation and allowing the rapid characterisation of therapeutic modalities in physiologically relevant environments.

3.
Adv Mater ; 36(11): e2307077, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37793118

RESUMO

3D ceramic architectures are captivating geometrical features with an immense demand in optics. In this work, an additive manufacturing (AM) approach for printing alkaline-earth perovskite 3D microarchitectures is developed. The approach enables custom-made photoresists suited for two-photon lithography, permitting the production of alkaline-earth perovskite (BaZrO3 , CaZrO3 , and SrZrO3 ) 3D structures shaped in the form of octet-truss lattices, gyroids, or inspired architectures like sodalite zeolite, and C60 buckyballs with micrometric and nanometric feature sizes. Alkaline-earth perovskite morphological, structural, and chemical characteristics are studied. The optical properties of such perovskite architectures are investigated using cathodoluminescence and wide-field photoluminescence emission to estimate the lifetime rate and defects in BaZrO3 , CaZrO3 , and SrZrO3 . From a broad perspective, this AM methodology facilitates the production of 3D-structured mixed oxides. These findings are the first steps toward dimensionally refined high-refractive-index ceramics for micro-optics and other terrains like (photo/electro)catalysis.

4.
ACS Appl Nano Mater ; 6(11): 9657-9669, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37325012

RESUMO

Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 107 (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications.

5.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177048

RESUMO

With the growing population, access to clean water is one of the 21st-century world's challenges. For this reason, different strategies to reduce pollutants in water using renewable energy sources should be exploited. Photocatalysts with extended visible light harvesting are an interesting route to degrade harmful molecules utilized in plastics, as is the case of Bisphenol A (BPA). This work uses a microwave-assisted route for the synthesis of two photocatalysts (BiOI and Bi2MoO6). Then, BiOI/Bi2MoO6 heterostructures of varied ratios were produced using the same synthetic routes. The BiOI/Bi2MoO6 with a flower-like shape exhibited high photocatalytic activity for BPA degradation compared to the individual BiOI and Bi2MoO6. The high photocatalytic activity was attributed to the matching electronic band structures and the interfacial contact between BiOI and Bi2MoO6, which could enhance the separation of photo-generated charges. Electrochemical, optical, structural, and chemical characterization demonstrated that it forms a BiOI/Bi2MoO6 p-n heterojunction. The free radical scavenging studies showed that superoxide radicals (O2•-) and holes (h+) were the main reactive species, while hydroxyl radical (•OH) generation was negligible during the photocatalytic degradation of BPA. The results can potentiate the application of the microwave synthesis of photocatalytic materials.

6.
Chem Commun (Camb) ; 59(21): 3095-3098, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36805077

RESUMO

Microscale functional materials permit advanced applications in optics and photonics. This work presents the additive manufacturing of three-dimensional structured phosphors emitting red, green, blue, and white. The development is a step forward to realizing additive colour synthesis within complex architectures of relevance in integrated optics or light-emitting sources.

7.
ACS Appl Mater Interfaces ; 14(28): 31767-31781, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786845

RESUMO

Photocatalytic H2 generation by water splitting is a promising alternative for producing renewable fuels. This work synthesized a new type of Ta2O5/SrZrO3 heterostructure with Ru and Cu (RuO2/CuxO/Ta2O5/SrZrO3) using solid-state chemistry methods to achieve a high H2 production of 5164 µmol g-1 h-1 under simulated solar light, 39 times higher than that produced using SrZrO3. The heterostructure performance is compared with other Ta2O5/SrZrO3 heterostructure compositions loaded with RuO2, CuxO, or Pt. CuxO is used to showcase the usage of less costly cocatalysts to produce H2. The photocatalytic activity toward H2 by the RuO2/CuxO/Ta2O5/SrZrO3 heterostructure remains the highest, followed by RuO2/Ta2O5/SrZrO3 > CuxO/Ta2O5/SrZrO3 > Pt/Ta2O5/SrZrO3 > Ta2O5/SrZrO3 > SrZrO3. Band gap tunability and high optical absorbance in the visible region are more prominent for the heterostructures containing cocatalysts (RuO2 or CuxO) and are even higher for the binary catalyst (RuO2/CuxO). The presence of the binary catalyst is observed to impact the charge carrier transport in Ta2O5/SrZrO3, improving the solar to hydrogen conversion efficiency. The results represent a valuable contribution to the design of SrZrO3-based heterostructures for photocatalytic H2 production by solar water splitting.

8.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215010

RESUMO

Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.

9.
Pharmaceutics ; 14(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35057113

RESUMO

Three-dimensional (3D) complex in vitro cell systems are well suited to providing meaningful and translatable results in drug screening, toxicity measurements, and biological studies. Reliable complex gastrointestinal in vitro models as a testbed for oral drug administration and toxicity are very valuable in achieving predictive results for clinical trials and reducing animal testing. However, producing these models is time-consuming due to the lengthy differentiation of HT29 or other cells into mucus-producing goblet cells or other intestinal cell lineages. In the present work, HT29 cells were grown on an inorganic topographic surface decorated with a periodic pattern of micrometre-sized amorphous SiO2 structures for up to 35 days. HT29 cells on topographic surfaces were compared to undifferentiated HT29 in glucose-containing medium on glass or culture dish and with HT29 cells differentiated for 30 days in the presence of methotrexate (HT29-MTX). The cells were stained with Alcian blue for mucus, antibodies for mucus 2 (goblet cells), villin (enterocytes), lysozyme (Paneth cells), and FITC-labeled lectins to identify different cells, glycomic profiles, and cell features. We observed that HT29 cells on topographic surfaces showed more similarities with the differentiated HT29-MTX than with undifferentiated HT29. They formed islands of cell clusters, as observed for HT29-MTX. Already after 2 days, the first mucus secretion was shown by Alcian blue stain and FITC-wheat germ agglutinin. After 4-6 days, mucus was observed on the cell surface and in the intercellular space. The cell layer was undulated, and in 3D reconstruction, the cells showed a clear polarisation with a strong actin signal to one membrane. The lectins and the antibody-staining confirmed the heterogeneous composition of differentiated HT29 cells on topographic surfaces after 6-8 days, or after 6-8 days following MTX differentiation (30 days).

10.
ChemCatChem ; 14(23): e202201106, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37063813

RESUMO

Vanadium redox flow batteries (VRFBs) are appealing large-scale energy storage systems due to their unique properties of independent energy/power design. The VRFBs stack design is crucial for technology deployment in power applications. Besides the design, the stack suffers from high voltage losses caused by the electrodes. The introduction of active sites into the electrode to facilitate the reaction kinetic is crucial in boosting the power rate of the VRFBs. Here, an O-rich layer has been applied onto structured graphite felt (GF) by depositing WO3 to increase the oxygen species content. The oxygen species are the active site during the positive reaction (VO2 +/VO2+) in VRFB. The increased electrocatalytic activity is demonstrated by the monoclinic (m)-WO3/GF electrode that minimizes the voltage losses, yielding excellent performance results in terms of power density output and limiting current density (556 mWcm-2@800 mAcm-2). The results confirm that the m-WO3/GF electrode is a promising electrode for high-power in VRFBs, overcoming the performance-limiting issues in a positive half-reaction.

11.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34947582

RESUMO

In vitro cell models play important roles as testbeds for toxicity studies, drug development, or as replacements in animal experiments. In particular, complex tumor models such as hepatocellular carcinoma (HCC) are needed to predict drug efficacy and facilitate translation into clinical practice. In this work, topographical features of amorphous silicon dioxide (SiO2) are fabricated and tested for cell culture of primary HCC cells and cell lines. The topographies vary from pyramids to octahedrons to structures named fractals, with increased hierarchy and organized in periodic arrays (square or Hexagonal). The pyramids were found to promote complex 2D/3D tissue formation from primary HCC cells. It was found that the 2D layer was mainly composed of cancer-associated fibroblasts (CAFs), while the 3D spheroids were composed of tumor cells enwrapped by a CAF layer. Compared with conventional protocols for 3D cultures, this novel approach mimics the 2D/3D complexity of the original tumor by invading CAFs and a microtumor. Topographies such as octahedrons and fractals exclude tumor cells and allow one-step isolation of CAFs even directly from tumor tissue of patients as the CAFs migrate into the structured substrate. Cell lines form spheroids within a short time. The presented inorganic topographical surfaces stimulate complex spheroid formation while avoiding additional biological scaffolds and allowing direct visualization on the substrate.

12.
ACS Appl Nano Mater ; 4(8): 8600-8610, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34485847

RESUMO

Co-axial electrospinning was applied for the structuring of non-woven webs of TiO2 nanofibers loaded with Ag, Au, and CuO nanoparticles. The composite layers were tested in an electrochromic half-cell assembly. A clear correlation between the nanoparticle composition and electrochromic effect in the nanofibrous composite is observed: TiO2 loaded with Ag reveals a black-brown color, Au shows a dark-blue color, and CuO shows a dark-green color. For electrochromic applications, the Au/TiO2 layer is the most promising choice, with a color modulation time of 6 s, transmittance modulation of 40%, coloration efficiency of 20 cm2/C, areal capacitance of 300 F/cm2, and cyclic stability of over 1000 cycles in an 18 h period. In this study, an unexplored path for the rational design of TiO2-based electrochromic device is offered with unique color-switching and optical efficiency gained by the fibrous layer. It is also foreseen that co-axial electrospinning can be an alternative nanofabrication technique for smart colored windows.

13.
Soft Matter ; 17(3): 506-515, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33231247

RESUMO

Microparticles can be considered building units for functional systems, but their assembly into larger structures typically involves complex methods. In this work, we show that a large variety of macro-agglomerate clusters ("supra-particles") can be obtained, by systematically varying the initial particle concentration in an evaporating droplet, spanning more than 3 decades. The key is the use of robust superhydrophobic substrates: in this study we make use of a recently discovered kind of patterned surface with fractal-like microstructures which dramatically reduce the contact of the droplet with the solid substrate. Our results show a clear transition from quasi-2D to 3D clusters as a function of the initial particle concentration, and a clear transition from unstable to stable 3D spheroids as a function of the evaporation rate. The origin of such shape transitions can respectively be found in the dynamic wetting of the fractal-like structure, but also in the enhanced mechanical stability of the particle agglomerate as its particle packing fraction increases.

14.
Sci Rep ; 10(1): 12805, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732959

RESUMO

The scientific community is exploiting the use of silver nanoparticles (AgNPs) in nanomedicine and other AgNPs combination like with biomaterials to reduce microbial contamination. In the field of nanomedicine and biomaterials, AgNPs are used as an antimicrobial agent. One of the most effective approaches for the production of AgNPs is green synthesis. Lysiloma acapulcensis (L. acapulcensis) is a perennial tree used in traditional medicine in Mexico. This tree contains abundant antimicrobial compounds. In the context of antimicrobial activity, the use of L. acapulcensis extracts can reduce silver to AgNPs and enhance its antimicrobial activity. In this work, we demonstrate such antimicrobial activity effect employing green synthesized AgNPs with L. acapulcensis. The FTIR and LC-MS results showed the presence of chemical groups that could act as either (i) reducing agents stabilizing the AgNPs or (ii) antimicrobial capping agents enhancing antimicrobial properties of AgNPs. The synthesized AgNPs with L. acapulcensis were crystalline with a spherical and quasi-spherical shape with diameters from 1.2 to 62 nm with an average size diameter of 5 nm. The disk diffusion method shows the magnitude of the susceptibility over four pathogenic microorganisms of clinical interest. The antimicrobial potency obtained was as follows: E. coli ≥ S. aureus ≥ P. aeruginosa > C. albicans. The results showed that green synthesized (biogenic) AgNPs possess higher antimicrobial potency than chemically produced AgNPs. The obtained results confirm a more significant antimicrobial effect of the biogenic AgNPs maintaining low-cytotoxicity than the AgNPs produced chemically.


Assuntos
Anti-Infecciosos/farmacologia , Fabaceae/química , Fabaceae/metabolismo , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/química , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia
15.
Nanoscale ; 11(44): 21207-21217, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31663581

RESUMO

Three-layer core-shell-nanoparticle nanoarchitectures exhibit properties not achievable by single-element nanostructures alone and have great potential to enable rationally designed functionality. However, nanofabrication strategies for crafting core-shell-nanoparticle structure arrays on surfaces are widely lacking, despite the potential of basically unlimited material combinations. Here we present a nanofabrication approach that overcomes this limitation. Using it, we produce a library of nanoarchitectures composed of a metal core and an oxide/nitride shell that is decorated with few-nanometer-sized particles with widely different material combinations. This is enabled by resolving a long-standing challenge in this field, namely the ability to grow a shell layer around a nanofabricated core without prior removal of the lithographically patterned mask, and the possibility to subsequently grow smaller metal nanoparticles locally on the shell only in close proximity of the core. Focusing on the application of such nanoarchitectures in plasmonics, we show experimentally and by Finite-Difference Time-Domain (FDTD) simulations that these structures exhibit significant optical absorption enhancement in small metal nanoparticles grown on the few nanometer thin dielectric shell layer around a plasmonic core, and derive design rules to maximize the effect by the tailored combination of the core and shell materials. We predict that these structures will find application in plasmon-mediated catalysis and nanoplasmonic sensing and spectroscopy.

16.
ACS Appl Mater Interfaces ; 11(39): 36196-36204, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31418548

RESUMO

Faceted colloidal nanoparticles are currently of immense interest due to their unique electronic, optical, and catalytic properties. However, continuous flow synthesis that enables rapid formation of faceted nanoparticles of single or multi-elemental composition is not trivial. We present a continuous flow synthesis route for the synthesis of uniformly sized Pd nanocubes and PdPt core-shell nanoparticles in a single-phase microfluidic reactor, which enables rapid formation of shaped nanoparticles with a reaction time of 3 min. The PdPt core-shell nanoparticles feature a dendritic, high surface area with the Pt shell covering the Pd core, as verified using high-resolution scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The Pd nanocubes and PdPt core-shell particles are catalytically tested during NO2 reduction in the presence of H2 in a flow pocket reactor. The Pd nanocubes exhibited low-temperature activity (i.e., <136 °C) and poor selectivity performance toward production of N2O or N2, whereas PdPt core-shell nanoparticles showed higher activity and were found to achieve better selectivity during NO2 reduction retaining its basic structure at relatively elevated temperatures, making the PdPt core-shell particles a unique, desirable synergic catalyst material for potential use in NOx abatement processes.

17.
Nat Mater ; 18(5): 489-495, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936481

RESUMO

Hydrogen-air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal-polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.

18.
ACS Appl Bio Mater ; 2(11): 4801-4811, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021480

RESUMO

Smart antimicrobial surfaces are a powerful tool to prevent bacterial colonization at surfaces. In this work, we report a successful strategy for the functionalization of polydimethylsiloxane (PDMS) surfaces, widely used in medical devices, with salicylic acid (SA), a biocide approved for use in humans. Antimicrobial PDMS surfaces were fabricated via a rational design in which bifunctional silane linker molecules were covalently grafted onto the PDMS via one end, while soft intermolecular interactions with SA were generated at the other end to enable reversible load and release of the biocide. A molecular level understanding of the interface was obtained using attenuated total reflectance Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies, alongside density functional theory calculations. These reveal that the linker molecules dock the SA molecules at the surface via a 1:1 complexation interaction. Furthermore, each 1:1 complex acts as a nucleation point onto which multiple stacks of the biocide are subsequently stabilized via a combination of H-bonding and π-π stacking interactions, thus significantly enhancing SA uptake at the interface. The antimicrobial activity of these surfaces against model Gram-negative and Gram-positive bacteria represented by Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis is demonstrated by a log 6 reduction of planktonic bacterial populations and an efficient anti-biofilm activity at the surface.

19.
ACS Appl Bio Mater ; 1(5): 1294-1300, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996233

RESUMO

Soft substrates decorated with micropillar arrays are known to be sensitive to deflection due to capillary action. In this work, we demonstrate that micropillared epoxy surfaces are sensitive to single drops of bacterial suspensions. The micropillars can show significant deformations upon evaporation, just as capillary action does in soft substrates. The phenomenon has been studied with five bacterial strains: S. epidermidis, L. sakei, P. aeruginosa, E. coli, and B. subtilis. The results reveal that only droplets containing motile microbes with flagella stimulate micropillar bending, which leads to significant distortions and pillar aggregations forming dimers, trimers, and higher order clusters. Such deformation is manifested in characteristic patterns that are left on the microarrayed surface following evaporation and can be easily identified even by the naked eye. Our findings could lay the ground for the design and fabrication of mechanically responsive substrates, sensitive to specific types of microorganisms.

20.
Sci Rep ; 7(1): 5259, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701753

RESUMO

Photo-responsive antibacterial surfaces combining both on-demand photo-switchable activity and sustained biocidal release were prepared using sequential chemical grafting of nano-objects with different geometries and functions. The multi-layered coating developed incorporates a monolayer of near-infrared active silica-coated gold nanostars (GNS) decorated by silver nanoparticles (AgNP). This modular approach also enables us to unravel static and photo-activated contributions to the overall antibacterial performance of the surfaces, demonstrating a remarkable synergy between these two mechanisms. Complementary microbiological and imaging evaluations on both planktonic and surface-attached bacteria provided new insights on these distinct but cooperative effects.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Lasers , Nanopartículas Metálicas/química , Bactérias/efeitos da radiação , Ouro/química , Dióxido de Silício/química , Prata/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...