Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(13)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267991

RESUMO

Objectives.To characterize for the first timein vivoa novel bismuth-based nanoparticular contrast agent developed for preclinical applications. Then, to design and testin vivoa multi-contrast protocol for functional cardiac imaging using the new bismuth nanoparticles and a well-established iodine-based contrast agent.Approach.A micro-computed tomography scanner was assembled and equipped with a photon-counting detector. Five mice were administered with the bismuth-based contrast agent and systematically scanned over 5 h to quantify the contrast enhancement in relevant organs of interest. Subsequently, the multi-contrast agent protocol was tested on three mice. Material decomposition was performed on the acquired spectral data to quantify the concentration of bismuth and iodine in multiple structures, e.g. the myocardium and vasculature.Main results.In the vasculature, the bismuth agent provides a peak enhancement of 1100 HU and a half-life of about 260 min. After the injection, it accumulates in the liver, spleen and intestinal wall reaching a CT value of 440 HU about 5 h post injection. Phantom measurements showed that the bismuth provides more contrast enhancement than iodine for a variety of tube voltages. The multi-contrast protocol for cardiac imaging successfully allowed the simultaneous decomposition of the vasculature, the brown adipose tissue and the myocardium.Significance.The new bismuth-based contrast agent was proven to have a long circulation time suitable for preclinical applications and to provide more contrast than iodine agents. The proposed multi-contrast protocol resulted in a new tool for cardiac functional imaging. Furthermore, thanks to the contrast enhancement provided in the intestinal wall, the novel contrast agent may be used to develop further multi contrast agent protocols for abdominal and oncological imaging.


Assuntos
Iodo , Camundongos , Animais , Microtomografia por Raio-X/métodos , Meios de Contraste , Bismuto , Abdome , Imagens de Fantasmas , Fótons
2.
Med Phys ; 49(7): 4566-4584, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35390181

RESUMO

BACKGROUND: The image quality of cone beam CT (CBCT) scans severely suffers from scattered radiation if no countermeasures are taken. Scatter artifacts may induce cupping and streak artifacts and lead to a reduced image contrast and wrong CT values of the reconstructed volumes. Established software-based approaches for a correction of scattered radiation typically rely on prior knowledge of the CT system, scan parameters, the scanned object, or all of the aforementioned. PURPOSE: This study proposes a simple and effective postprocessing software-based correction method of scatter artifacts in CBCT scans without specific prior knowledge. METHODS: We propose the empirical scatter correction (ESC), which generates scatter-like basis images from each projection image by convolution operations. A linear combination of these basis images is subtracted from the original projection image. The logarithm is taken and an FDK reconstruction is performed. The coefficients needed for the linear combination are determined automatically by a downhill simplex algorithm such that the resulting reconstructed images show no scatter artifacts. We demonstrate the potential of ESC by correcting simulated volumes with Monte Carlo scatter artifacts, a head phantom scan performed on our table-top CBCT, and a pelvis scan from a Varian Edge CBCT scanner. RESULTS: ESC is able to improve the image quality of CBCT scans, which is shown on the basis of our simulations and on measured data. For a simulated head CT, the CT value difference to the scatter-free reference image was as low as -6 HU after using ESC, whereas the uncorrected data deviated by more than -200 HU from the reference data. Simulations of thorax and abdomen CT scans show that although scatter artifacts are not fully removed, anatomical features which were hard to discover prior to the correction become clearly visible and better segmentable with ESC. Similar results are obtained in the phantom measurement, where a comparison to a slit scan of our head phantom shows only small differences. The CT values in soft tissue are improved in this measurement, as well. In soft tissue areas with severe scatter artifacts, the CT values agree well with those of the slit scan (difference to slit scan: 35 HU corrected and -289 HU uncorrected). Scatter artifacts in measured patient data can also be reduced using the proposed ESC. The results are comparable to those achieved with designated correction algorithms installed on the Varian Edge CBCT system. CONCLUSIONS: ESC allows to reduce artifacts caused by patient scatter solely based on the projection data.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico Espiral , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...