Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 996, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042559

RESUMO

Metal halide perovskite nanocrystals are promising materials for a diverse range of applications, such as light-emitting devices and photodetectors. We demonstrate the bandgap tunability of strongly emitting CH3NH3PbBr3 nanocrystals synthesized at both room and elevated (60 °C) temperature through the variation of the precursor and ligand concentrations. We discuss in detail the role of two ligands, oleylamine and oleic acid, in terms of the coordination of the lead precursors and the nanocrystal surface. The growth mechanism of nanocrystals is elucidated by combining the experimental results with the principles of nucleation/growth models. The proposed formation mechanism of perovskite nanocrystals will be helpful for further studies in this field and can be used as a guide to improve the synthetic methods in the future.The development of perovskite nanocrystals is limited by poor mechanistic understanding of their growth. Here, the authors systematically study the ligand-assisted reprecipitation synthesis of CH3NH3PbBr3 nanocrystals, revealing the effect of precursor and ligand concentrations on bandgap tunability.

2.
Ann Plast Surg ; 78(2): 217-222, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27845964

RESUMO

Plastic and reconstructive surgeons increasingly apply adipose tissue grafting in a clinical setting, although the anticipation of graft survival is insecure. There are only few tools for tracking transplanted fat grafts in vivo.Murine adipose tissue clusters were incubated with negatively charged, mercaptoproprionic acid-coated cadmium telluride quantum dots (QDs) emitting in the dark red or near infrared. The intracellular localization of QDs was studied by confocal laser scanning microscopy.As a result, the adipose tissue clusters showed a proportional increase in fluorescence with increasing concentrations (1, 10, 16, 30, 50 nM) of cadmium telluride QDs. Laser scanning microscopy demonstrated a membrane bound localization of QDs. Vacuoles and cell nuclei of adipocytes were spared by QDs. We conclude that QDs were for the first time proven intracellular in adult adipocytes and demonstrate a strong fluorescence signal. Therefore, they may play an essential role for in vivo tracking of fat grafts.


Assuntos
Compostos de Cádmio , Substâncias Luminescentes , Pontos Quânticos , Gordura Subcutânea/diagnóstico por imagem , Gordura Subcutânea/transplante , Telúrio , Animais , Compostos de Cádmio/administração & dosagem , Compostos de Cádmio/farmacocinética , Substâncias Luminescentes/administração & dosagem , Substâncias Luminescentes/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Pontos Quânticos/administração & dosagem , Espectroscopia de Luz Próxima ao Infravermelho , Gordura Subcutânea/metabolismo , Telúrio/administração & dosagem , Telúrio/farmacocinética
3.
Adv Mater ; 29(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27862427

RESUMO

Strongly emissive (photoluminescence quantum yield up to 65%), thermally stable aluminum hydroxide blue phosphors are synthesized by a single-source precursor-decomposition approach. Blue-emitting UV-pumped light-emitting diodes (LEDs) based on the aluminum hydroxide phosphor reach luminous efficiency of 27.5 lm W-1 , while UV-white-LEDs integrating blue-emitting aluminum hydroxide and red-emitting CuInS2 nanocrystals achieve high color-rendering-index values of 94.3 and luminous efficiency of 23.5 lm W-1 .

4.
Adv Sci (Weinh) ; 3(11): 1600182, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27980993

RESUMO

Most of the present-day down-conversion white light-emitting devices (WLEDs) utilize rare-earth elements, which are expensive and facing the problem of shortage in supply. WLEDs based on the combination of orange and blue emitting copper nanoclusters are introduced, which are easy to produce and low in cost. Orange emitting Cu nanoclusters (NCs) are synthesized using glutathione as both the reduction agent and stabilizer, followed by solvent induced aggregation leading to the emission enhancement. Photoluminescence quantum yields (PL QY) of 24% and 43% in solution and solid state are achieved, respectively. Blue emitting Cu nanoclusters are synthesized by reduction of polyvinylpyrrolidone supported Cu(II) ions using ascorbic acid, followed by surface treatment with sodium citrate which improves both the emission intensity and stability of the clusters, resulting in the PL QY of 14% both in solution and solid state. All-copper nanocluster based down-conversion WLEDs are fabricated by integrating powdered orange and blue emitting Cu NC samples on a commercial GaN LED chip providing 370 nm excitation. They show favorable white light characteristics with Commission Internationale de l'Eclairage color coordinates, color rendering index, and correlated color temperature of (0.36, 0.31), 92, and 4163 K, respectively.

5.
J Phys Chem Lett ; 7(21): 4398-4404, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27774786

RESUMO

The beneficial role of the insulating material polyhedral oligomeric silsesquioxane (POSS) as a solution additive or an additional hole-blocking layer to enhance the performance of electroluminescent green light-emitting devices (LEDs) based on CsPbBr3 perovskite nanocrystals is demonstrated. POSS improves the surface coverage and the morphological features of the films deposited either from supernatant or suspension of perovskite nanocrystals. The external quantum efficiency and the luminance efficiency of LEDs with an additional POSS layer reach 0.35% and 1.20 cd/A, respectively, constituting a more than 17-fold enhancement to the reference devices without POSS; the LED peak luminance reaches 2983 cd/m2, and the device stability is improved. The POSS acts as a hole-blocking layer between the perovskite nanocrystals and TPBi, keeping both electrons and holes located within the active layer for an efficient recombination.

6.
Nanoscale ; 8(13): 7197-202, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971389

RESUMO

Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.

7.
ACS Appl Mater Interfaces ; 8(1): 871-80, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26720613

RESUMO

Multidrug therapy may yield higher therapeutic effects as compared to monotherapy, yet its wide application has been hampered by the limitations of conventional drug delivery systems, in which not only incompatible drugs cannot be co-delivered but also the release rates of individual co-delivered drugs cannot be tuned separately. Regarding these limitations, we adopt the microfluidic electrospray technology to fabricate alginate-based multicompartment microgel beads. By using cadmium-telluride (CdTe) quantum dots (QDs) and a quenching agent as a model pair, the beads are shown to effectively separate incompatible drugs during co-delivery, and significantly prolong the time of observable fluorescence emission from QDs co-delivered with a quenching agent. Moreover, the drug release rates from different compartments can be tuned using the polymer blending technique to achieve a variety of drug release patterns. This study is one of the first to adopt the microfluidic electrospray technology to generate microgel beads with such versatility for co-delivery of multiple drugs. Our results provide evidence for the promising potential of our beads to be further developed as a carrier for multidrug therapy and other applications that require co-administration of multiple bioactive agents.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Géis/química , Microesferas , Preparações Farmacêuticas/administração & dosagem , Células 3T3 , Animais , Compostos de Cádmio , Sobrevivência Celular , Células HEK293 , Humanos , Camundongos , Pontos Quânticos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Telúrio
8.
Chem Sci ; 7(9): 5699-5703, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30034709

RESUMO

We present an approach towards stable solid-state perovskite based luminophores with different emission colors via surface protection of CsPbX3 (X = Br or I) with a polyhedral oligomeric silsesquioxane (POSS). This treatment results in water resistant perovskite nanocrystal powders, and prevents otherwise easy anion exchange between perovskite nanocrystals of different compositions mixed together in the solid state, which allows us to preserve their distinct emission spectra. We subsequently used mixtures of green-emitting POSS-CsPbBr3 and red-emitting POSS-CsPb(Br/I)3 nanocrystal powders to fabricate single layer all-perovskite down conversion white light-emitting devices.

9.
ACS Nano ; 9(11): 11049-55, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26468974

RESUMO

One-dimensional semiconductor nanorods are a very promising class of materials for applications in modern optoelectronic devices, such as light-emitting diodes, solar cells, displays, and lasers. Their ability to emit linearly polarized light is considered to simplify device structures and improve the overall efficiencies. To ensure macroscopic polarization in such devices, the biggest challenge is the long-range alignment of nanorods by controllable means. We propose a technique that combines photoinduced alignment with nanorod's self-assembly. With this approach, we are able to actively control the alignment directions of highly emissive semiconductor nanorods in both microscopic and macroscopic scale with the order parameter as high as 0.87. As a result, polarized emission has been achieved with the degree of polarization of 0.62. Furthermore, patterned alignment of nanorods with spatially varying local orientations has been realized to demonstrate the great flexibility of this approach. Besides opportunities for applications, our method of alignment offers insights into host-guest interactions governing self-assembly of colloidal nanocrystals within the host molecular matrix.

10.
Adv Sci (Weinh) ; 2(9): 1500194, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27980980

RESUMO

Emission color controlled, high quantum yield CH3NH3PbBr3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

11.
Nat Mater ; 13(11): 1013-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25087066

RESUMO

Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g(-1) h(-1), respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.

12.
Nanoscale ; 6(15): 9192-7, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24981883

RESUMO

Performing far-field microscope polarization spectroscopy and finite element method simulations, we investigated experimentally and theoretically the surface plasmon modes in single Ag nanowire antennas. Our results show that the surface plasmon resonances in the single Ag nanowire antenna can be tuned from the dipole plasmon mode to a higher order plasmon mode, which would result in the emission with different intensities and polarization states, for the semiconductor quantum dots coupled to the nanowire antenna. The fluorescence polarization is changed with different polarized excitation of the 800 nm light beam, while it remains parallel to the Ag nanowire axis at the 400 nm excitation. The 800 nm incident light interacts nonresonantly with the dipole plasmon mode with the polarized excitation parallel to the Ag nanowire axis, while it excites a higher order plasmon mode with the perpendicular excitation. Under excitation of 400 nm, either the parallel or perpendicular excitation can only result in a dipole plasmon mode. In addition, we demonstrate that the single Ag nanowire antenna can work as an energy concentrator for enhancing the two-photon excited fluorescence of semiconductor quantum dots.

13.
ACS Nano ; 8(2): 1273-83, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24490807

RESUMO

The distance dependence of localized surface plasmon (LSP) coupled Förster resonance energy transfer (FRET) is experimentally and theoretically investigated using a trilayer structure composed of separated monolayers of donor and acceptor quantum dots with an intermediate Au nanoparticle layer. The dependence of the energy transfer efficiency, rate, and characteristic distance, as well as the enhancement of the acceptor emission, on the separations between the three constituent layers is examined. A d(-4) dependence of the energy transfer rate is observed for LSP-coupled FRET between the donor and acceptor planes with the increased energy transfer range described by an enhanced Förster radius. The conventional FRET rate also follows a d(-4) dependence in this geometry. The conditions under which this distance dependence is valid for LSP-coupled FRET are theoretically investigated. The influence of the placement of the intermediate Au NP is investigated, and it is shown that donor-plasmon coupling has a greater influence on the characteristic energy transfer range in this LSP-coupled FRET system. The LSP-enhanced Förster radius is dependent on the Au nanoparticle concentration. The potential to tune the characteristic energy transfer distance has implications for applications in nanophotonic devices or sensors.

14.
Chemphyschem ; 14(12): 2853-8, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23818114

RESUMO

Whereas CdSe nanorods that are grown in organic solution have a hexagonal wurtzite structure, which is the limiting case for exchange, HgSe is more commonly encountered as a cubic zinc blende system. An exchange process was performed at room temperature and at atmospheric pressure in an aqueous environment after phase transfer of the original CdSe nanorods, which reinforced the tendency for the endpoint of HgSe to be cubic. Consequently, we observed that under ambient conditions, the exchange process terminated with an average composition of only Cd(0.9)Hg(0.1)Se. Following the changes during the process by optical spectroscopy and high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), we observed that the Hg(2+) ions diffused into the rods to a point limited by the formation of stacking faults due to the different lattice structures of the two limiting cases of zinc blende and wurtzite. HAADF-STEM and energy dispersive spectroscopy analyses also confirmed that the Hg substitution did not occur uniformly throughout the individual nanorods, as Hg-poor and Hg-rich regions coexist around the stacking faults. The formation of near-infrared-emitting alloyed Cd(x)Hg(1-x)Se nanorods in an aqueous medium highlights the subtle dependence of the ion-exchange process on the differences in the crystal structures of the two endpoint lattices.

15.
Nanoscale ; 5(8): 3400-5, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23471137

RESUMO

The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

16.
Chem Soc Rev ; 42(7): 3033-87, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23361653

RESUMO

The chemistry, material processing and fundamental understanding of colloidal semiconductor nanocrystals (quantum dots) are advancing at an astounding rate, bringing the prospects of widespread commercialization of these novel and exciting materials ever closer. Interest in narrow bandgap nanocrystals in particular has intensified in recent years, and the results of research worldwide point to the realistic prospects of applications for these materials in solar cells, infrared optoelectronics (e.g. lasers, optical modulators, photodetectors and photoimaging devices), low cost/large format microelectronics, and in biological imaging and biosensor systems to name only some technologies. Improvements in fundamental understanding and material quality are built on a vast body of experience spread over many different methods of colloidal synthetic growth, each with their own strengths and weaknesses for different materials and sometimes with regard to particular applications. The nanocrystal growth expertise is matched by a rapidly expanding, and highly interdisciplinary, understanding of how best to assemble these materials into films or hybrid composites and thereby into useful devices, and again there are many different strategies that can be adopted. In this review we have attempted to survey and compare the recent work on colloidal synthesis, film and nanocrystal composite material fabrication, concentrating on narrow bandgap chalcogenide materials and some of their topical applications in the solar energy and biological fields. Since these applications are attracting rising interest across a wide range of disciplines, from the biological sciences, device engineering, and materials processing fields as well as the physics and synthetic chemistry communities, we have endeavoured to make the review of these narrow bandgap nanomaterials both comprehensive and accessible to newcomers to the area.

17.
Nanoscale ; 5(4): 1465-9, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23322365

RESUMO

We present results of a comparative study of colloidal anatase titanium oxide nanorods and extremely thin atomic wires of systematically decreasing (2.6 nm down to 0.5 nm) diameter in terms of their optical absorption as well as steady-state and time-resolved photoluminescence. Steady-state photoluminescence spectra of the titania samples show three well-distinguished spectral components, which are ascribed to excitonic emission (4.26 ± 0.2 eV), as well as radiative recombination of trapped holes with electrons from the conduction band (4.04 ± 0.4 eV) and radiative recombination of trapped electrons with holes in the valence band (3.50 ± 0.2 eV) in nanocrystalline anatase TiO(2). Time-resolved photoluminescence measurements point out the existence of different emissive species responsible for the appearance of high-energetic and low-energetic emission peaks of TiO(2) atomic wires and nanorods.


Assuntos
Coloides/química , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Titânio/química , Luz , Teste de Materiais , Tamanho da Partícula , Espalhamento de Radiação
18.
ACS Nano ; 6(10): 9283-90, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22973978

RESUMO

Nonradiative energy transfer to metal nanoparticles is a technique used for optical-based distance measurements which is often implemented in sensing. Both Förster resonant energy transfer (FRET) and nanometal surface energy transfer (NSET) mechanisms have been proposed for emission quenching in proximity to metal nanoparticles. Here quenching of emission of colloidal quantum dots in proximity to a monolayer of gold nanoparticles is investigated. Five differently sized CdTe quantum dots are used to probe the wavelength dependence of the quenching mechanism as their emission peak moves from on resonance to off resonance with respect to the localized surface plasmon peak of the gold nanoparticle layer. The gold nanoparticle concentration and distance dependences of energy transfer are discussed. Photoluminescence quenching and lifetime data are analyzed using both FRET and NSET models and the extracted characteristic distances are compared with theory. Good agreement with FRET theory has been found for quantum dots with emission close to the localized surface plasmon resonance, though larger than expected Förster radii are observed for quantum dots with emission red-shifted with respect to the localized surface plasmon peak. Closer agreement between experimental and theoretical characteristic distances can be found across the full wavelength range within a NSET approach.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Modelos Químicos , Simulação por Computador , Transferência de Energia , Ouro/efeitos da radiação , Luz , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula
19.
Chemphyschem ; 13(10): 2589-95, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22499537

RESUMO

We report the use of an organo-iridium dye conjugated with a water-soluble copolyethylenimine polymer, allowing the hybrid material to be used in combination with thioacid-coated CdTe quantum dots in an aqueous medium. When they are combined, hot carrier cooling observed in the pure quantum-dot case is heavily suppressed indicating fast (ps) electron transfer on a timescale that competes with non-radiative (Auger) relaxation.

20.
ACS Nano ; 6(4): 3128-33, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22390408

RESUMO

We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...