Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 279 Suppl 1: 98-114, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28511864

RESUMO

Octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) are low molecular weight cyclic volatile methyl siloxanes (cVMSs) primarily used as intermediates or monomers in the production of high molecular weight silicone polymers. The use of D4 as a direct ingredient in personal care products has declined significantly over the past 20 years, although it may be present as a residual impurity in a variety of consumer products. D5 is still used as an intentional ingredient in cosmetics, consumer products and in dry cleaning. Persons who may be exposed include occupational exposure for workers, and potential inhalation or dermal exposure for consumers and the general public. Because of the diverse use, especially of D5, and the potential for human exposure, a comprehensive program was undertaken to understand the kinetics, metabolism, enzyme induction and toxicity of D4 and D5 in rats following relevant routes of exposure. Physiologically based pharmacokinetic (PBPK) models utilizing these studies have been reported for D4 and D5 in the rat and human following dermal and inhalation exposures, with the oral uptake component of the model being limited in its description. Data from high dose oral studies in corn oil and simethicone vehicles and neat were used in the D4/D5 harmonized PBPK model development. It was uncertain if the inability to adequately describe the oral uptake was due to unrealistic high doses or unique aspects of the chemistry of D4/D5. Low dose studies were used to provide data to refine the description of oral uptake in the model by exploring the dose dependency and the impact of a more realistic food-like vehicle. Absorption, distribution, metabolism and elimination (ADME) of D4 and D5 was determined following a single low oral gavage dose of 14C-D4 and 14C-D5 at 30 and 100mg/kg body weight (bw), respectively, in a rodent liquid diet. Comparison of the low vs. high dose oral gavage administration of D4 and D5 demonstrated dose-dependent kinetic behavior. Data and modeling results suggest differences in metabolism between low and high dose administration indicating high dose administration results in or approaches non-linear saturated metabolism. These low dose data sets were used to refine the D4/D5 multi-route harmonized PBPK model to allow for a better description of the disposition and toxicokinetics of D4/D5 following oral exposure. With a refined oral uptake description, the model could be used in risk assessment to better define the internal dose of D4 and D5 following exposure to D4 and D5 via multiple routes.


Assuntos
Poluentes Ambientais/metabolismo , Siloxanas/metabolismo , Tecido Adiposo/química , Administração por Inalação , Glândulas Suprarrenais/química , Animais , Área Sob a Curva , Isótopos de Carbono , Poluentes Ambientais/sangue , Poluentes Ambientais/química , Poluentes Ambientais/farmacocinética , Feminino , Trato Gastrointestinal/química , Fígado/química , Pulmão/química , Masculino , Ovário/química , Ratos , Ratos Endogâmicos F344 , Siloxanas/química , Siloxanas/farmacocinética , Baço/química , Testículo/química , Distribuição Tecidual , Útero/química
2.
Toxicol Lett ; 279 Suppl 1: 115-124, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28438492

RESUMO

Critical factors (uptake, distribution, metabolism and elimination) for understanding the bioaccumulation/biomagnification potential of Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5) siloxanes in fish were investigated to address whether these chemicals meet the "B" criteria of the Persistent, Bioaccumulative, and Toxic (PBT) classification. A metabolism study was conducted in rainbow trout whereby a 15mg [14C]D4/kg bw or [14C]D5/kg bw as a single bolus oral dose was administered via gavage. Of the administered dose, 79% (D4) and 78% (D5) was recovered by the end of the study (96-h). Eighty-two percent and 25% of the recovered dose was absorbed based on the percentage of recovered dose in carcass (69% and 17%), tissues, bile and blood (12% and 8%) and urine (1%) for D4 and D5, respectively. A significant portion of the recovered dose (i.e. 18% for D4 and 75% for D5) was eliminated in feces. Maximum blood concentrations were 1.6 and 1.4µg D4 or D5/g blood at 24h post-dosing, with elimination half-lives of 39h (D4) and 70h (D5). Modeling of parent and metabolite blood concentrations resulted in estimated metabolism rate constants (km(blood)) of 0.15 (D4) and 0.17day-1(D5). Metabolites in tissues, bile, blood, and urine totaled a minimum of 2% (D4) and 14% (D5) of the absorbed dose. The highest concentration of 14C-activity in the fish following D4 administration was in mesenteric fat followed by bile, but the opposite was true for D5. Metabolites were not detected in fat, only parent chemical. In bile, 94% (D4) and 99% (D5) of the 14C-activity was due to metabolites. Metabolites were also detected in the digestive tract, liver and gonads. Approximately 40% of the 14C-activity detected in the liver was due to the presence of metabolites. Urinary elimination represented a minor pathway, but all the 14C-activity in the urine was associated with metabolites. Clearance may occur via enterohepatic circulation of metabolic products in bile with excretion via the digestive tract and urinary clearance of polar metabolites.


Assuntos
Poluentes Ambientais/metabolismo , Siloxanas/metabolismo , Administração Oral , Animais , Isótopos de Carbono , Poluentes Ambientais/sangue , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/urina , Oncorhynchus mykiss , Prednisolona/análogos & derivados , Siloxanas/farmacocinética
3.
Toxicol Appl Pharmacol ; 211(3): 245-60, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16040073

RESUMO

Strategies were developed for the estimation of systemically available daily doses of chemicals, diurnal variations in blood levels, and rough elimination rates in subchronic feeding/drinking water studies, utilizing a minimal number of blood samples. Systemic bioavailability of chemicals was determined by calculating area under the plasma concentration curve over 24 h (AUC-24 h) using complete sets of data (> or =5 data points) and also three, two, and one selected time points. The best predictions of AUC-24 h were made when three time points were used, corresponding to Cmax, a mid-morning sample, and C(min). These values were found to be 103 +/- 10% of the original AUC-24 h, with 13 out of 17 values ranging between 96 and 105% of the original. Calculation of AUC-24 h from two samples (Cmax and Cmin) or one mid-morning sample afforded slightly larger variations in the calculated AUC-24 h (69-136% of the actual). Following drinking water exposure, prediction of AUC-24 h using 3 time points (Cmax, mid-morning, and Cmin) was very close to actual values (80-100%) among mice, while values for rats were only 63% of the original due to less frequent drinking behavior of rats during the light cycle. Collection and analysis of 1-3 blood samples per dose may provide insight into dose-proportional or non-dose-proportional differences in systemic bioavailability, pointing towards saturation of absorption or elimination or some other phenomenon warranting further investigation. In addition, collection of the terminal blood samples from rats, which is usually conducted after 18 h of fasting, will be helpful in rough estimation of blood/plasma half-life of the compound. The amount of chemical(s) and/or metabolite(s) in excreta and their possible use as biomarkers in predicting the daily systemic exposure levels are also discussed. Determining these parameters in the early stages of testing will provide critical information to improve the appropriate design of other longer-term toxicity studies.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacocinética , Clorpirifos/farmacocinética , Projetos de Pesquisa , Testes de Toxicidade Crônica , Ácido 2,4-Diclorofenoxiacético/sangue , Ácido 2,4-Diclorofenoxiacético/toxicidade , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Clorpirifos/sangue , Clorpirifos/toxicidade , Ingestão de Líquidos , Inativação Metabólica , Masculino , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo , Testes de Toxicidade Crônica/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA