Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(5): 2905-2922, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35212377

RESUMO

CMTR1 (cap methyltransferase 1) catalyses methylation of the first transcribed nucleotide of RNAPII transcripts (N1 2'-O-Me), creating part of the mammalian RNA cap structure. In addition to marking RNA as self, N1 2'-O-Me has ill-defined roles in RNA expression and translation. Here, we investigated the gene specificity of CMTR1 and its impact on RNA expression in embryonic stem cells. Using chromatin immunoprecipitation, CMTR1 was found to bind to transcription start sites (TSS) correlating with RNAPII levels, predominantly binding at histone genes and ribosomal protein (RP) genes. Repression of CMTR1 expression resulted in repression of RNAPII binding at the TSS and repression of RNA expression, particularly of histone and RP genes. In correlation with regulation of histones and RP genes, CMTR1 repression resulted in repression of translation and induction of DNA replication stress and damage. Indicating a direct role for CMTR1 in transcription, addition of recombinant CMTR1 to purified nuclei increased transcription of the histone and RP genes. CMTR1 was found to be upregulated during neural differentiation and there was an enhanced requirement for CMTR1 for gene expression and proliferation during this process. We highlight the distinct roles of the cap methyltransferases RNMT and CMTR1 in target gene expression and differentiation.


Assuntos
Células-Tronco Embrionárias , Histonas , Metiltransferases , Proteínas Ribossômicas , Animais , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Capuzes de RNA/genética , RNA Polimerase II/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
2.
Nucleic Acids Res ; 49(12): 6722-6738, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125914

RESUMO

The m7G cap is ubiquitous on RNAPII-transcribed RNA and has fundamental roles in eukaryotic gene expression, however its in vivo role in mammals has remained unknown. Here, we identified the m7G cap methyltransferase, RNMT, as a key mediator of T cell activation, which specifically regulates ribosome production. During T cell activation, induction of mRNA expression and ribosome biogenesis drives metabolic reprogramming, rapid proliferation and differentiation generating effector populations. We report that RNMT is induced by T cell receptor (TCR) stimulation and co-ordinates the mRNA, snoRNA and rRNA production required for ribosome biogenesis. Using transcriptomic and proteomic analyses, we demonstrate that RNMT selectively regulates the expression of terminal polypyrimidine tract (TOP) mRNAs, targets of the m7G-cap binding protein LARP1. The expression of LARP1 targets and snoRNAs involved in ribosome biogenesis is selectively compromised in Rnmt cKO CD4 T cells resulting in decreased ribosome synthesis, reduced translation rates and proliferation failure. By enhancing ribosome abundance, upregulation of RNMT co-ordinates mRNA capping and processing with increased translational capacity during T cell activation.


Assuntos
Ativação Linfocitária , Metiltransferases/fisiologia , Biossíntese de Proteínas , Ribossomos/metabolismo , Linfócitos T/enzimologia , Animais , Técnicas de Inativação de Genes , Guanosina/metabolismo , Ativação Linfocitária/genética , Metiltransferases/biossíntese , Metiltransferases/genética , Camundongos , Capuzes de RNA/química , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Regulação para Cima
3.
Molecules ; 26(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671275

RESUMO

Oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) have long been known for their organoleptic properties. Both plants are widely used in cuisine worldwide in fresh and dried form and as a pharmaceutical raw material. The study aimed to assess if the type of cultivation influenced chosen chemical parameters (total polyphenols by Folin-Ciocalteu method; carotenoids and chlorophyll content by Lichtenthaler method), antimicrobial activity (with chosen reference microbial strains) and shaped cytotoxicity (with L929 mouse fibroblasts cell line) in water macerates of dry oregano and thyme. Polyphenols content and antimicrobial activity were higher in water macerates obtained from conventional cultivation (independently from herb species), unlike the pigments in a higher amount in macerates from organic herbs cultivation. Among all tested macerates stronger antimicrobial properties (effective in inhibiting the growth of Pseudomonas aeruginosa, Bacillus cereus and Salmonella enteritidis) and higher cytotoxicity (abilities to diminish the growth of L929 fibroblasts cytotoxicity) characterized the conventionally cultivated thyme macerate.


Assuntos
Agricultura , Carotenoides/análise , Clorofila/análise , Fenóis/análise , Água/química , Animais , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Testes de Sensibilidade Microbiana , Origanum/química , Extratos Vegetais , Polifenóis/análise , Thymus (Planta)/química
4.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289179

RESUMO

Damaged DNA typically imposes stringent controls on eukaryotic cell cycle progression, ensuring faithful transmission of genetic material. Some DNA breaks, and the resulting rearrangements, are advantageous, however. For example, antigenic variation in the parasitic African trypanosome, Trypanosoma brucei, relies upon homologous recombination-based rearrangements of telomeric variant surface glycoprotein (VSG) genes, triggered by breaks. Surprisingly, trypanosomes with a severed telomere continued to grow while progressively losing subtelomeric DNA, suggesting a nominal telomeric DNA damage checkpoint response. Here, we monitor the single-stranded DNA-binding protein replication protein A (RPA) in response to induced, locus-specific DNA breaks in T. brucei RPA foci accumulated at nucleolar sites following a break within ribosomal DNA and at extranucleolar sites following a break elsewhere, including adjacent to transcribed or silent telomeric VSG genes. As in other eukaryotes, RPA foci were formed in S phase and γH2A and RAD51 damage foci were disassembled prior to mitosis. Unlike in other eukaryotes, however, and regardless of the damaged locus, RPA foci persisted through the cell cycle, and these cells continued to replicate their DNA. We conclude that a DNA break, regardless of the damaged locus, fails to trigger a stringent cell cycle checkpoint in T. brucei This DNA damage tolerance may facilitate the generation of virulence-enhancing genetic diversity, within subtelomeric domains in particular. Stringent checkpoints may be similarly lacking in some other eukaryotic cells.IMPORTANCE Chromosome damage must be repaired to prevent the proliferation of defective cells. Alternatively, cells with damage must be eliminated. This is true of human and several other cell types but may not be the case for single-celled parasites, such as trypanosomes. African trypanosomes, which cause lethal diseases in both humans and livestock, can actually exploit chromosomal damage to activate new surface coat proteins and to evade host immune responses, for example. We monitored responses to single chromosomal breaks in trypanosomes using a DNA-binding protein that, in response to DNA damage, forms nuclear foci visible using a microscope. Surprisingly, and unlike what is seen in mammalian cells, these foci persist while cells continue to divide. We also demonstrate chromosome replication even when one chromosome is broken. These results reveal a remarkable degree of damage tolerance in trypanosomes, which may suit the lifestyle of a single-celled parasite, potentially facilitating adaptation and enhancing virulence.


Assuntos
Dano ao DNA , Replicação do DNA , Telômero/genética , Trypanosoma brucei brucei/genética , Ciclo Celular , Quebras de DNA de Cadeia Dupla , Variação Genética , Proteínas de Protozoários/genética , Proteína de Replicação A/genética
5.
Cell Rep ; 23(5): 1530-1542, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719263

RESUMO

mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription.


Assuntos
Metiltransferases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/fisiologia , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Metiltransferases/genética , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Ubiquitinação/fisiologia
6.
Cell Rep ; 16(5): 1352-1365, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452456

RESUMO

The mRNA cap recruits factors essential for transcript processing and translation initiation. We report that regulated mRNA cap methylation is a feature of embryonic stem cell (ESC) differentiation. Expression of the mRNA cap methyltransferase activating subunit RAM is elevated in ESCs, resulting in high levels of mRNA cap methylation and expression of a cohort of pluripotency-associated genes. During neural differentiation, RAM is suppressed, resulting in repression of pluripotency-associated factors and expression of a cohort of neural-associated genes. An established requirement of differentiation is increased ERK1/2 activity, which suppresses pluripotency-associated genes. During differentiation, ERK1/2 phosphorylates RAM serine-36, targeting it for ubiquitination and proteasomal degradation, ultimately resulting in changes in gene expression associated with loss of pluripotency. Elevated RAM expression also increases the efficiency of fibroblast reprogramming. Thus, the mRNA cap emerges as a dynamic mark that instructs change in gene expression profiles during differentiation and reprogramming.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/genética , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Sistema de Sinalização das MAP Quinases/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/genética , Biossíntese de Proteínas/genética , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...