Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475271

RESUMO

This article describes the one-pot microwave synthesis of silver nanoparticles (AgNPs) assisted with natural polyelectrolytes-humic substances (HS). The humic polyelectrolytes served both as chemical reductants for silver ions and as end-capping agents for AgNPs. Three commercially available sodium humates extracted from lignites and leonardite and one sodium fulvate isolated from natural brown water seeped through peat deposits were used in this study. The dynamics of the growth rate of AgNPs was characterised by UV-VIS spectroscopy by measuring the intensity of surface plasmon resonance at 420 nm. Transmission electron microscopy was used to characterise the size and morphology of AgNPs. Dynamic light scattering was used to determine size distributions of the synthesised AgNPs in the solutions. It was established that both conventional and microwave syntheses assisted with the coal humates produced small-size AgNPs in the range from 4 to 14 nm, with the maximum share of particles with sizes of (6 ± 2) nm by TEM estimates. The peat fulvate yielded much larger NPs with sizes from 10 to 50 nm by TEM estimates. DLS measurements revealed multimodal distributions of AgNPs stabilised with HS, which included both single NPs with the sizes from 5 to 15 nm, as well as their dominating aggregates with sizes from 20 to 200 nm and a smaller portion of extra-large aggregates up to 1000 nm. The given aggregates were loosely bound by humic polyelectrolyte, which prevented the coalescence of AgNPs into larger particles, as can be seen in the TEM images. The significant acceleration in the reaction time-a factor of 60 to 70-was achieved with the use of MW irradiation: from 240 min down to 210-240 s. The coal humate stabilised AgNPs showed antimicrobial properties in relation to S. aureus. A conclusion was made regarding the substantial advantages of microwave synthesis in the context of time and scaling up for the large-scale production of AgNP-HS preparations with antimicrobial properties suitable for external wound-healing applications.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999299

RESUMO

La2O3 nanoparticles stabilized on carbon nanoflake (CNF) matrix were synthesized and graphitized to produce core-shell structures La2O3/CNFs@C. Further oxidation of these structures by nitric acid vapors for 1, 3 or 6 h was performed, and surface-oxidized particles La2O3/CNFs@C_x (x = 1, 3, 6) were produced. Bulk and surface compositions of La2O3/CNFs@C and La2O3/CNFs@C_x were investigated by thermogravimetric analysis and X-ray photoelectron spectroscopy. With increasing the duration of oxidation, the oxygen and La2O3 content in the La2O3/CNFs@C_x samples increased. The electronic structures of samples were assessed by electron paramagnetic resonance. Two paramagnetic centers were associated with unpaired localized and mobile electrons and were registered in all samples. The correlation between bulk and surface compositions of the samples and their electronic structures was investigated for the first time. The impact of the ratio between sp2- and sp3-hybridized C atoms, the number and nature of oxygen-containing groups on the surface and the presence and proportion of coordinated La atoms on the EPR spectra was demonstrated.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500733

RESUMO

The subject of the current research study is aimed at the development of novel types of contrast agents (CAs) for multi-energy computed tomography (CT) based on Ln-graphene composites, which include Ln (Ln = La, Nd, and Gd) nanoparticles with a size of 2-3 nm, acting as key contrasting elements, and graphene nanoflakes (GNFs) acting as the matrix. The synthesis and surface modifications of the GNFs and the properties of the new CAs are presented herein. The samples have had their characteristics determined using X-ray photoelectron spectroscopy, X-Ray diffraction, transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy. Multi-energy CT images of the La-, Nd-, and Gd-based CAs demonstrating their visualization and discriminative properties, as well as the possibility of a quantitative analysis, are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...