Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 643: 123211, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37422143

RESUMO

Citrate buffers are commonly utilized in the field of biomolecule stabilization. We investigate their applicability in the frozen state within a range of initial pHs (2.5 to 8.0) and concentrations (0.02 to 0.60 M). Citrate buffer solutions subjected to various cooling and heating temperatures are examined in terms of the freezing-induced acidity changes, revealing that citrate buffers acidify upon cooling. The acidity is assessed with sulfonephthalein molecular probes frozen in the samples. Optical cryomicroscopy combined with differential scanning calorimetry was employed to investigate the causes of the observed acidity changes. The buffers partly crystallize and partly vitrify in the ice matrix; these processes influence the resulting pH and allow designing the optimal storage temperatures in the frozen state. The freezing-induced acidification apparently depends on the buffer concentration; at each pH, we suggest pertinent concentration, at which freezing causes minimal acidification.


Assuntos
Citratos , Congelamento , Soluções Tampão , Concentração de Íons de Hidrogênio , Liofilização , Varredura Diferencial de Calorimetria
2.
J Biomol Struct Dyn ; 41(24): 15435-15445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36931873

RESUMO

Nanoparticles (NPs) can directly or indirectly enter into the body because of their small size; then they tend to alter the conformation and function of proteins upon interaction with them. Thus, it is crucial to understand the impact of NPs in a biological medium. Recently, niobium pentoxide nanoparticles (Nb2O5 NPs) are finding increasing applications in the biological system, for example, bone tissue and dental material, matrix for biosensing of proteins, etc. In all such applications, the Nb2O5 NP interacts with proteins and other biomolecules. Hence, the study of such interactions is of considerable importance. Here in this work, we present the impact of Nb2O5 NP on the structure, stability and activity of blood proteins, bovine serum albumin (BSA) and human serum albumin (HSA) by means of various spectroscopic approaches. Steady-state fluorescence studies indicated that intrinsic fluorescence intensities of both serum albumin proteins got quenched upon their interaction with NP. The nature of the quenching was elucidated by time-resolved fluorescence and absorption measurements. Using circular dichroism (CD) and synchronous fluorescence spectroscopy (SFS), the structural perturbations of the protein molecules after interaction with NP were investigated. Moreover, the role of temperature on protein stability upon complexation with NP was also explored. In addition, the effect of NP on protein functionality was probed by esterase-like activity assays.Communicated by Ramaswamy H. Sarma.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Espectrometria de Fluorescência , Óxidos , Dicroísmo Circular , Soroalbumina Bovina/química , Ligação Proteica , Termodinâmica , Sítios de Ligação , Simulação de Acoplamento Molecular
3.
Int J Pharm ; 593: 120128, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33271311

RESUMO

Solutions of three Good's buffers (HEPES, MOPS, and MES), both pure and mixed with sodium phosphate buffers (Na-P), are investigated in terms of the freezing-induced acidity changes in their operational pH ranges. The Good's buffers have the tendency to basify upon freezing and, more intensively, at lower pHs. The acidity varies most prominently in MES, where the change may reach the value of two. Importantly, the Good's buffers are shown to mitigate the strong acidification in the Na-P buffer. Diverse concentrations of the Good's buffers are added to cancel out the strong, freezing-induced acidity drop in 50 mM Na-P that markedly contributes to the solution's acidity; the relevant values are 3 mM HEPES, 10 mM MOPS, and 80 mM MES. These buffer blends are therefore proposed to be applied in maintaining approximately the acidity of solutions even after the freezing process and, as such, should limit the stresses for frozen chemicals and biochemicals.


Assuntos
Fosfatos , Soluções Tampão , Congelamento , Concentração de Íons de Hidrogênio , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA