Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(23): 16083-16092, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765482

RESUMO

Phenyllactic acid (PLA), is a naturally produced, broad-spectrum antimicrobial compound with activity against bacteria and fungi. PLA can be produced by a variety of lactic acid bacteria, including vaginal Lactobacillus species, which are healthy constituents of the vaginal microbiome with a protective role against invading pathogenic bacteria and/or fungi. Additionally, PLA has been shown to exhibit anti-inflammatory and immunomodulatory properties, overall indicating its therapeutic potential as an intravaginally delivered compound for modulation of the vaginal microbiome. However, PLA has low kinetic solubility in water. Hence, strategies to improve the solubility of PLA are necessary to facilitate its intravaginal delivery. Using biocompatible cations, choline and carnitine, we successfully transformed both d- and l-enantiomers of crystalline PLA into amorphous low-melting ionic liquids (ILs) with high water solubility. We further evaluated the in vitro cytotoxicity of PLA ILs to human cervical epithelial cells. Microscopic visualisation of cellular morphology using crystal violet staining and MTT cell proliferation assay revealed that PLA ILs result in minimal morphological changes and low cytotoxicity to human cervical epithelial cells. Overall, we successfully demonstrated that transforming PLA into ILs efficiently enhances its solubility in water and these formulations are not toxic to human epithelial cells. This investigation lays the groundwork for future testing of PLA ILs for their antimicrobial properties and metabolic activity within the cervicovaginal microenvironment.

2.
J Org Chem ; 89(10): 6865-6876, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38669055

RESUMO

Reported herein is a new method for the direct synthesis of glycosyl chlorides from thioglycosides using sulfuryl chloride at rt. A variety of thioglycosides and thioimidates could be used as substrates. Both acid- and base-sensitive protecting groups were found compatible with these reaction conditions. Preliminary investigation of the reaction mechanism indicates chlorination of the leaving group at the anomeric sulfur as the key step of the reaction.


Assuntos
Cloretos , Tioglicosídeos , Tioglicosídeos/química , Tioglicosídeos/síntese química , Estrutura Molecular , Cloretos/química , Glicosídeos/química , Glicosídeos/síntese química , Glicosilação
3.
Org Lett ; 26(10): 2034-2038, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486497

RESUMO

Tuberculosis (TB) is one of the most dreadful diseases, killing more than 3 million humans annually. M. tuberculosis (MTb) is the causative agent for TB and has a thick and waxy cell wall, making it an attractive target for immunological studies. In this study, a heptamannopyranoside containing 1 → 2 and 1 → 6 α-mannopyranosidic linkages has been explored for the immunological evaluations. The conjugation-ready heptamannopyranoside was synthesized by exploiting the salient features of recently discovered [Au]/[Ag]-glycosidation of ethynylcyclohexyl glycosyl carbonate donors. The glycan was conjugated to the ESAT6, an early secreted protein of MTb for further characterization as a potential subunit vaccine candidate.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/metabolismo , Carbonatos , Catálise
4.
ACS Infect Dis ; 10(1): 93-106, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37807721

RESUMO

BX795 is an emerging drug candidate that has shown a lot of promise as a next-generation non-nucleoside antiviral agent for the topical treatment of herpes simplex virus type-1 (HSV-1) and herpes simplex virus type-2 (HSV-2) infections. Our studies indicated that BX795 has limited oral bioavailability, which could be attributed to its low and pH-dependent solubility. Lipid-based formulations such as self-nanoemulsifying systems (SNESs) can improve the solubility and oral bioavailability of BX795, but the poor lipid solubility of BX795 further limits the development of SNES. To improve the loading of BX795 into SNES, we evaluated the ability of various bulky and biocompatible anions to transform BX795 into an ionic liquid (IL) with higher lipid solubility. Our studies showed that sodium lauryl sulfate and docusate sodium were able to transform BX795 into IL. Compared to pure BX795, the developed BX795 ILs showed differential in vitro cytocompatibility to HeLa cells but exhibited similar in vitro antiviral activity against HSV-2. Interestingly, BX795 docusate (BX795-Doc), an IL of BX795 with ∼135-fold higher lipid solubility than pure BX795, could be successfully incorporated into an SNES, and the developed BX795-Doc-SNES could readily form nanoemulsions of size ≤200 nm irrespective of the pH of the buffer used for dilution. Our in vitro studies showed that BX795-Doc-SNES retained the inherent antiviral activity against HSV-2 and showed similar in vitro cytocompatibility, indicating the availability of BX795 from the SNES in vitro. Finally, orally delivered SNES containing BX795-Doc showed a significant reduction in HSV-2 infection in mice compared to the untreated control. Thus, the transformation of BX795 into IL and the subsequent incorporation of the BX795 IL into the SNES are an effective strategy to improve oral therapy of genital herpes infection.


Assuntos
Herpes Genital , Líquidos Iônicos , Pirimidinas , Tiofenos , Humanos , Camundongos , Animais , Herpes Genital/tratamento farmacológico , Herpesvirus Humano 2 , Células HeLa , Antivirais/farmacologia , Antivirais/uso terapêutico , Lipídeos , Genitália
5.
iScience ; 25(12): 105682, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536680

RESUMO

Chronic inflammation of the immune privileged cornea originating from viral or nonviral conditions results in significant vision loss. Topical corticosteroids are the common treatments for corneal inflammation, but the drugs cause serious and potentially blinding side effects in the long term. Therefore, new standalone and/or synergistic anti-inflammatory therapies with lower side effects are desperately needed. Here, we show that the aromatic fatty acid phenylbutyrate (PBA) acts as a potent inhibitor of inflammation in preclinical ocular-inflammation models. PBA prevents the transcription as well as translation of pro-inflammatory cytokines by LPS and poly(I:C) via persistent inhibition of NF-κB signaling. PBA quickens the resolution of ocular inflammation in mice by decreasing corneal thickness and immune cell infiltration. More importantly, PBA can synergize with the dexamethasone to antagonize NF-κB signaling at lower drug concentrations. Our results demonstrate that PBA therapy exerts previously unreported anti-inflammatory effects in the eye and facilitates corneal healing during persistent inflammation.

6.
PLoS Biol ; 20(8): e3001762, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35976859

RESUMO

Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.


Assuntos
Candidíase , Nanopartículas , Animais , Antifúngicos/farmacologia , Biofilmes , Candida , Candida albicans , Candidíase/microbiologia , Fluconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Niclosamida/farmacologia , Niclosamida/uso terapêutico
7.
Chem Commun (Camb) ; 58(5): 641-644, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34918719

RESUMO

Unlike solid phase synthesis of peptides, synthesis of oligosaccharides by solid phase methods is lagging behind owing to inherent challenges faced while executing glycosidations. In this communication, silver-assisted gold-catalyzed glycosidations are found to be excellent for solid phase oligosaccharide synthesis. Glycosidations under catalytic conditions, one time coupling with four equivalents of donor, reactions in less than 30 min at 25 °C and on-resin deprotection of silyl and benzoate protecting groups are the salient features. Photocleaved glycans possess a protected amino functionality that can be utilized for bioconjugation. The versatility of this approach is established by synthesizing linear and branched pentaarabinofuranosides.


Assuntos
Oligossacarídeos
8.
Pharmaceutics ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834335

RESUMO

BX795 is a TANK binding kinase-1 inhibitor that has shown excellent therapeutic activity in murine models of genital and ocular herpes infections on topical delivery. Currently, only the BX795 free base and its hydrochloride salt are available commercially. Here, we evaluate the ability of various organic acids suitable for vaginal and/or ocular delivery to form BX795 salts/cocrystals/co-amorphous systems with the aim of facilitating pharmaceutical development of BX795. We characterized BX795-organic acid coevaporates using powder X-ray diffractometry, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, 1H-nuclear magnetic resonance spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the interaction between BX795 and various organic acids such as taurine, maleic acid, fumaric acid, tartaric acid, and citric acid. Furthermore, using human corneal epithelial cells and HeLa cells, we evaluated BX795-organic acid coevaporates for in vitro cytocompatibility and in vitro antiviral activity against herpes simplex virus-type 1 (HSV-1) and type-2 (HSV-2). Our studies indicate that BX795 forms co-amorphous systems with tartaric acid and citric acid. Interestingly, the association of organic acids with BX795 improved its thermal stability. Our in vitro cytocompatibility and in vitro antiviral studies to screen suitable BX795-organic acid coevaporates for further development show that all BX795-organic acid systems, at a concentration equivalent to 10 µM BX795, retained antiviral activity against HSV-1 and HSV-2 but showed differential cytocompatibility. Further, dose-dependent in vitro cytocompatibility and antiviral activity studies on the BX795-fumaric acid system, BX795-tartaric acid co-amorphous system, and BX795-citric acid co-amorphous system show similar antiviral activity against HSV-1 and HSV-2 compared to BX795, whereas only the BX795-citric acid co-amorphous system showed higher in vitro cytocompatibility compared to BX795.

9.
Bioeng Transl Med ; 6(3): e10238, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589607

RESUMO

There are numerous barriers to achieving effective intraocular drug administration, including the mucus layer protecting the ocular surface. For this reason, antibiotic eye drops must be used multiple times per day to prevent and treat ocular infections. Frequent eye drop use is inconvenient for patients, and lack of adherence to prescribed dosing regimens limits treatment efficacy and contributes to antibiotic resistance. Here, we describe an ion-pairing approach used to create an insoluble moxifloxacin-pamoate (MOX-PAM) complex for formulation into mucus-penetrating nanosuspension eye drops (MOX-PAM NS). The MOX-PAM NS provided a significant increase in ocular drug absorption, as measured by the area under the curve in cornea tissue and aqueous humor, compared to Vigamox in healthy rats. Prophylactic and treatment efficacy were evaluated in a rat model of ocular Staphylococcus aureus infection. A single drop of MOX-PAM NS was more effective than Vigamox, and completely prevented infection. Once a day dosing with MOX-PAM NS was similar, if not more effective, than three times a day dosing with Vigamox for treating S. aureus infection. The MOX-PAM NS provided increased intraocular antibiotic absorption and improved prevention and treatment of ocular keratitis, and the formulation approach is highly translational and clinically relevant.

10.
ACS Infect Dis ; 7(9): 2637-2649, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34467755

RESUMO

As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans ß-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged ß-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.


Assuntos
Anti-Helmínticos , Cryptococcus neoformans , Líquidos Iônicos , Preparações Farmacêuticas , Anti-Helmínticos/farmacologia , Benzimidazóis/farmacologia , Ácido Dioctil Sulfossuccínico , Simulação de Acoplamento Molecular , Solubilidade
11.
ACS Omega ; 6(4): 2626-2637, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553880

RESUMO

Epidemiological evidence has accentuated the repurposing of metformin hydrochloride for cancer treatment. However, the extreme hydrophilicity and poor permeability of metformin hydrochloride are responsible for its poor anticancer activity in vitro and in vivo. Here, we report the synthesis and characterization of several lipophilic metformin salts containing bulky anionic permeation enhancers such as caprate, laurate, oleate, cholate, and docusate as counterions. Of various counterions tested, only docusate was able to significantly improve the lipophilicity and lipid solubility of metformin. To evaluate the impact of the association of anionic permeation enhancers with metformin, we checked the in vitro anticancer activity of various lipophilic salts of metformin using drug-sensitive (MYCN-2) and drug-resistant (SK-N-Be2c) neuroblastoma cells as model cancer cells. Metformin hydrochloride showed a very low potency (IC50 ≈ >100 mM) against MYCN-2 and SK-N-Be2c cells. Anionic permeation enhancers showed a considerably higher activity (IC50 ≈ 125 µM to 1.6 mM) against MYCN-2 and SK-N-Be2c cells than metformin. The association of metformin with most of the bulky anionic agents negatively impacted the anticancer activity against MYCN-2 and SK-N-Be2c cells. However, metformin docusate showed 700- to 4300-fold improvement in anticancer potency compared to metformin hydrochloride and four- to five-fold higher in vitro anticancer activity compared to sodium docusate, indicating a synergistic association between metformin and docusate. A similar trend was observed when we tested the in vitro activity of metformin docusate, sodium docusate, and metformin hydrochloride against hepatocellular carcinoma (HepG2) and triple-negative breast cancer (MDA-MB-231) cells.

12.
Commun Chem ; 4(1): 15, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36697540

RESUMO

Clinically approved anti-coagulant Fondaparinux is safe since it has zero contamination problems often associated with animal based heparins. Fondaparinux is a synthetic pentasaccharide based on the antithrombin-binding domain of Heparin sulfate and contains glucosamine, glucuronic acid and iduronic acid in its sequence. Here, we show the formal synthesis of Fondaparinux pentasaccharide by performing all glycosidations in a catalytic fashion for the first time to the best of our knowledge. Designer monosaccharides were synthesized avoiding harsh reaction conditions or reagents. Further, those were subjected to reciprocal donor-acceptor selectivity studies to guide [Au]/[Ag]-catalytic glycosidations for assembling the pentasaccharide in a highly convergent [3 + 2] or [3 + 1 + 1] manner. Catalytic and mild activation during glycosidations that produce desired glycosides exclusively, scalable route to the synthesis of unnatural and expensive iduronic acid, minimal number of steps and facile purifications, shared use of functionalized building blocks and excellent process efficiency are the salient features.

13.
Chem Biol Drug Des ; 95(1): 174-181, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581353

RESUMO

The discovery of antibiotics around the middle twentieth century led to a decrease in the interest in antimycobacterial fatty acids. In order to re-establish the importance of naturally abundant fatty acid, a series of fatty acid-thiadiazole derivatives were designed and synthesized based on molecular hybridization approach. In vitro antimycobacterial potential was established by a screening of synthesized compounds against Mycobacterium tuberculosis H37Rv strain. Among them, compounds 5a, 5d, 5h, and 5j were the most active, with compound 5j exhibiting minimum inhibitory concentration of 2.34 µg/ml against M.tb H37Rv. Additionally, the compounds were docked to determine the probable binding interactions and understand the mechanism of action of most active molecules on enoyl-acyl carrier protein reductases (InhA), which is involved in the mycobacterium fatty acid biosynthetic pathway.


Assuntos
Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Ácidos Graxos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Tiadiazóis/síntese química , Antituberculosos/farmacologia , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiadiazóis/farmacologia
14.
Eur J Med Chem ; 183: 111713, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557610

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become the world's leading killer disease due to a single infectious agent which survives in the host macrophage for the indefinite period. Hence, it is necessary to enhance the efficacy of the clinically existing antitubercular agents or to discover new anti antitubercular agents. Here, we report the synthesis, characterization and antimycobacterial evaluation of protein-drug conjugates. A carrier protein, Transferrin (Tf) was covalently conjugated to isoniazid (INH) utilizing hydrazone and amide linkers. The purity of the reactions was confirmed by SDS-PAGE while conjugation was confirmed by UV-visible spectrophotometry, MALDI-TOF analysis, and FTIR spectrophotometry. The in vitro antitubercular assay result showed that the inhibitory activity of the parent drug was conserved in both the conjugates. The conjugates were effective against intracellular Mtb H37Rv and were devoid of cytotoxic effect at therapeutic concentration.


Assuntos
Antituberculosos , Isoniazida , Mycobacterium tuberculosis/efeitos dos fármacos , Transferrina , Tuberculose/tratamento farmacológico , Antituberculosos/síntese química , Antituberculosos/farmacologia , Estabilidade de Medicamentos , Humanos , Isoniazida/síntese química , Isoniazida/química , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Transferrina/química , Tuberculose/microbiologia
15.
Food Chem ; 275: 95-104, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724265

RESUMO

This study reports on removal of acrylamide from roasted coffee by acrylamidase from Cupriavidus oxalaticus ICTDB921. Chitosan coated calcium alginate beads were functionalized with citric acid as nontoxic cross linker and activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) (1.66:1 w/w) for covalent immobilization of acrylamidase. The optimum beads were obtained using 5% sodium alginate, 1.5% chitosan, and 0.6 mol/L citric acid. The beads prepared at each step were characterized by FTIR and SEM. Coating of chitosan matrix on calcium alginate beads enhanced the mechanical stability over that of calcium alginate and/or chitosan. The immobilized acrylamidase showed optimum pH/temperature of 8.5/65 °C, improved pH/thermal/shelf stability, and retained 80% activity after four cycles. Haldane model could describe the degradation kinetics of acrylamide in batch study. In packed bed column, a bed height, feed flow rate and inlet acrylamide concentration of 20 cm, 1 mL/min, and 100 mg/L gave best results.


Assuntos
Acrilamida/isolamento & purificação , Alginatos/química , Amidoidrolases/química , Quitosana/química , Café/química , Enzimas Imobilizadas/química , Manipulação de Alimentos/métodos , Burkholderiaceae/enzimologia , Carbodi-Imidas/química , Enzimas Imobilizadas/metabolismo , Manipulação de Alimentos/instrumentação , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Succinimidas/química , Temperatura
16.
Mater Sci Eng C Mater Biol Appl ; 92: 393-406, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184765

RESUMO

The effective delivery of low potency anticancer drug is a major challenge. The present study introduces the novel chitosan-polylactic acid (CS-PLA)-drug conjugate and its transferrin receptor targeted polyelectrolyte complex nanoparticles (PEC Nps), encapsulating free drug to increase its potency and specificity. The model drug curcumin (CR) was used and incorporated in this system in both conjugated and encapsulated form. The synthesis of CS-PLA-CR copolymer was confirmed by 1H NMR, FTIR, UV-visible spectrum, DSC thermogram and zeta potential. Further, the nanoparticles engulfing free CR, with average 340 nm particle sizes, were prepared through simple ionic gelation technique utilizing positive charges on copolymer by polyanion sodium alginate (CS-PLA-CR/SA PEC Nps). The prepared Nps showed the high CR content of over 92% with extended period of CR release (60% and 85% at pH 7.4 and 5 respectively even after 8 days). The results were compared with the unmodified CS (without PLA) as a control to understand the effect of PLA side chain. Transferrin (Tf) conjugation on PEC Nps displayed superior cytotoxicity and cellular uptake compared to non-targeted Nps on MCF-7 cell line. Thus, CR loaded Tf-CS-PLA-CR/SA PEC Nps may provide an efficient and targeted delivery for cancer treatment.


Assuntos
Antineoplásicos , Quitosana , Curcumina , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias/tratamento farmacológico , Polieletrólitos , Poliésteres , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Humanos , Células MCF-7 , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Polieletrólitos/química , Polieletrólitos/farmacocinética , Polieletrólitos/farmacologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Receptores da Transferrina/química
17.
Org Lett ; 19(13): 3628-3631, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28649835

RESUMO

Transition metal and reductant free α-C(sp3)-H hydroxylation of carbonyl compounds are reported. This method is promoted by commercially available inexpensive KO-t-Bu and atmospheric air as an oxidant at room temperature. This unified strategy is also very facile for hydroxylation of various carbonyl compound derivatives to obtain quaternary hydroxyl compounds in excellent yield. A preliminary mechanistic investigation, supported by isotope labeling and computational studies, suggests the formation of a peroxide bond and its cleavage by in situ generated enolate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...