Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 60(3): 535-545, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36779801

RESUMO

Malaria is responsible for over 435,000 deaths annually, mostly occurring in sub-Saharan Africa. Detecting Plasmodium spp. sporozoites (spzs) in the salivary glands of Anopheles (Diptera: Culicidae) vectors with circumsporozoite enzyme-linked immunosorbent assay (csELISA) is an important surveillance method. However, current technological advances are intellectual property and often require of distribution and highly trained users. The transition into paper-based rapid plataforms would allow for decentralization of survillance, especially in areas where it was virtually eliminated. The addition of bio-based materials have shown the potential to improve binding of target antigens, while being widely available. Here, we evaluate the use of chitosan and cellulose nanocrystals (CNC) as antibody carriers and substrate coatings on 96-well plates and on wax hydrophobized paper plates for the detection of Plasmodium falciparum (Pf), P. vivax VK210 (Pv210), and P. vivax VK247 (Pv247). To further improve the user-friendliness of the paper plates a quantitative photograph image-based color analysis was done. Interactions between the materials and the assay antibodies were studied by quartz crystal microbalance with dissipation monitoring (QCM-D). Overall, the addition of chitosan increased the interaction with antibodies and enhanced signaling in all tests. This work demonstrated that the adaptation of a PcsELISA shows potential as a cost-effective alternative assay platform easily adaptable in deployable testing sites that also showed reduction in reagent volumes by 80% and assay run time by seventh. While dipstick assays were previously developed, paper-based assays are a cost-effective and field-deployable alternative, reducing volumes of reagents that could be used in malaria control and elimination settings.


Assuntos
Anopheles , Quitosana , Malária , Plasmodium , Animais , Esporozoítos/química , Esporozoítos/metabolismo , Plasmodium vivax , Proteínas de Protozoários/análise , Mosquitos Vetores , Plasmodium falciparum , Anopheles/metabolismo
2.
Parasit Vectors ; 14(1): 473, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526109

RESUMO

BACKGROUND: In characterizing malaria epidemiology, measuring mosquito infectiousness informs the entomological inoculation rate, an important metric of malaria transmission. PCR-based methods have been touted as more sensitive than the current "gold-standard" circumsporozoite (CSP) ELISA. Wider application of PCR-based methods has been limited by lack of specificity for the infectious sporozoite stage. We compared a PCR method for detecting the parasite's mitochondrial (mt) cytochrome oxidase I (COX-I) gene with ELISA for detecting circumsporozoite protein for identification of different life stages of the parasite during development within a mosquito. METHODS: A PCR-based method targeting the Plasmodium mt COX-I gene was compared with the CSP ELISA method to assess infectivity in Anopheles arabiensis colony mosquitoes fed on blood from patients infected with Plasmodium vivax. Mosquitoes were tested at six post-infection time points (days 0.5, 1, 6, 9, 12, 15). The head and thorax and the abdomen for each specimen were tested separately with each method. Agreement between methods at each infection stage was measured using Cohen's kappa measure of test association. RESULTS: Infection status of mosquitoes was assessed in approximately 90 head/thorax and 90 abdomen segments at each time point; in total, 538 head/thorax and 534 abdomen segments were tested. In mosquitoes bisected after 0.5, 1, and 6 days post-infection (dpi), the mt COX-I PCR detected Plasmodium DNA in both the abdomen (88, 78, and 67%, respectively) and head/thorax segments (69, 60, and 44%, respectively), whilst CSP ELISA detected sporozoites in only one abdomen on day 6 post-infection. PCR was also more sensitive than ELISA for detection of Plasmodium in mosquitoes bisected after 9, 12, and 15 dpi in both the head and thorax and abdomen. There was fair agreement between methods for time points 9-15 dpi (κ = 0.312, 95% CI: 0.230-0.394). CONCLUSIONS: The mt COX-I PCR is a highly sensitive, robust method for detecting Plasmodium DNA in mosquitoes, but its limited Plasmodium life-stage specificity cannot be overcome by bisection of the head and thorax from the abdomen prior to PCR. Thus, the mt COX-I PCR is a poor candidate for identifying infectious mosquitoes.


Assuntos
Anopheles/parasitologia , Ensaio de Imunoadsorção Enzimática/normas , Estágios do Ciclo de Vida/genética , Plasmodium vivax/genética , Reação em Cadeia da Polimerase/normas , Esporozoítos/genética , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Plasmodium vivax/imunologia , Reação em Cadeia da Polimerase/métodos , Esporozoítos/imunologia
3.
Malar J ; 20(1): 377, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556130

RESUMO

BACKGROUND: Plasmodium spp. sporozoite rates in mosquitoes are used to better understand malaria transmission intensity, the relative importance of vector species and the impact of interventions. These rates are typically estimated using an enzyme-linked immunosorbent assay (ELISA) utilizing antibodies against the circumsporozoite protein of Plasmodium falciparum, Plasmodium vivax VK210 (P. vivax210) or P. vivax VK247 (P. vivax247), employing assays that were developed over three decades ago. The ELISA method requires a separate assay plate for each analyte tested and can be time consuming as well as requiring sample volumes not always available. The bead-based multiplex platform allows simultaneous measurement of multiple analytes and may improve the lower limit of detection for sporozoites. METHODS: Recombinant positive controls for P. falciparum, P. vivax210 and P. vivax247 and previously developed circumsporozoite (cs) ELISA antibodies were used to optimize conditions for the circumsporozoite multiplex bead assay (csMBA) and to determine the detection range of the csMBA. After optimizing assay conditions, known amounts of sporozoites were used to determine the lower limit of detection for the csELISA and csMBA and alternate cut-off measures were applied to demonstrate how cut-off criteria can impact lower limits of detection. Sporozoite rates from 1275 mosquitoes collected in Madagascar and 255 mosquitoes collected in Guinea were estimated and compared using the established csELISA and newly optimized csMBA. All mosquitoes were tested (initial test), and those that were positive were retested (retest). When sufficient sample volume remained, an aliquot of homogenate was boiled and retested (boiled retest), to denature any heat-unstable cross-reactive proteins. RESULTS: Following optimization of the csMBA, the lower limit of detection was 25 sporozoites per mosquito equivalent for P. falciparum, P. vivax210 and P. vivax247 whereas the lower limits of detection for csELISA were found to be 1400 sporozoites for P. falciparum, 425 for P. vivax210 and 1650 for P. vivax247. Combined sporozoite rates after re-testing of samples that initially tested positive for Madagascar mosquitoes by csELISA and csMBA were 1.4 and 10.3%, respectively, and for Guinea mosquitoes 2% by both assays. Boiling of samples followed by csMBA resulted in a decrease in the Madagascar sporozoite rate to 2.8-4.4% while the Guinea csMBA sporozoite rate remained at 2.0%. Using an alternative csMBA cut-off value of median fluorescence intensity (MFI) of 100 yielded a sporozoite rate after confirmational testing of 3.7% for Madagascar samples and 2.0% for Guinea samples. Whether using csMBA or csELISA, the following steps may help minimize false positives: specimens are appropriately stored and bisected anterior to the thorax-abdomen junction, aliquots of homogenate are boiled and retested following initial testing, and an appropriate cut-off value is determined. CONCLUSIONS: The csMBA is a cost-comparable and time saving alternative to the csELISA and may help eliminate false negatives due to a lower limit of detection, thus increasing sensitivity over the csELISA. The csMBA expands the potential analyses that can be done with a small volume of sample by allowing multiplex testing where analytes in addition to P. falciparum, P. vivax210 and P. vivax247 can be added following optimization.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Esporozoítos/isolamento & purificação , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Guiné , Madagáscar
4.
BMC Biotechnol ; 9: 91, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19849838

RESUMO

BACKGROUND: When rearing morphologically indistinguishable laboratory strains concurrently, the threat of unintentional genetic contamination is constant. Avoidance of accidental mixing of strains is difficult due to the use of common equipment, technician error, or the possibility of self relocation by adult mosquitoes ("free fliers"). In many cases, laboratory strains are difficult to distinguish because of morphological and genetic similarity, especially when laboratory colonies are isolates of certain traits from the same parental strain, such as eye color mutants, individuals with certain chromosomal arrangements or high levels of insecticide resistance. Thus, proving genetic integrity could seem incredibly time-consuming or impossible. On the other hand, lacking proof of genetically isolated laboratory strains could question the validity of research results. RESULTS: We present a method for establishing authentication matrices to routinely distinguish and confirm that laboratory strains have not become physically or genetically mixed through contamination events in the laboratory. We show a specific example with application to Anopheles gambiae sensu stricto strains at the Malaria Research and Reference Reagent Resource Center. This authentication matrix is essentially a series of tests yielding a strain-specific combination of results. CONCLUSION: These matrix-based methodologies are useful for several mosquito and insect populations but must be specifically tailored and altered for each laboratory based on the potential contaminants available at any given time. The desired resulting authentication plan would utilize the least amount of routine effort possible while ensuring the integrity of the strains.


Assuntos
Anopheles/classificação , Análise de Sequência de DNA/métodos , Animais , Anopheles/anatomia & histologia , Anopheles/genética , Genes de Insetos , Genótipo , Fenótipo , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...