Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(9): 095002, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230893

RESUMO

We report on the first multilocation electron temperature (T_{e}) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer "dots." The measurements define a low resolution "map" of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole. We evaluate the role of kinetic effects, self-generated magnetic fields, and instabilities in causing spatially dependent heat transport in the hohlraum.

2.
Phys Plasmas ; 24(5): 056312, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28611532

RESUMO

For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25871045

RESUMO

Three-dimensional wave propagation simulations and experiments show that the gain exponent, an often used metric to assess the likelihood of stimulated Brillouin scatter, is insufficient and must be augmented with another parameter, Nr, the ratio of the resonance length, Lres, to the laser speckle length. The damping rate of ion acoustic waves, ν, and thus Lres, which is proportional to ν, are easily varied with plasma species composition, e.g., by varying the ratio of hydrogen and carbon ions. As Nr decreases, stimulated Brillouin scattering increases despite the same gain exponent.

4.
J Opt Soc Am A Opt Image Sci Vis ; 30(7): 1460-3, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24323163

RESUMO

We present a simple solution to the Fresnel-Kirchoff diffraction integral that is appropriate for x-ray radiography of strongly absorbing and phase-shifting objects in the geometrical optics regime, where phase contrast enhancements can be considered to be caused by refraction by a semi-opaque object. We demonstrate its accuracy by comparison to brute-force numerical ray trace and diffraction calculations of a representative simulated object, and show excellent agreement for spatial scales corresponding to Fresnel numbers greater than unity. The result represents a significant improvement over approximate formulas typically used in analysis of refraction-enhanced radiographs, particularly for radiography of transient phenomena in objects that strongly refract and show significant absorption.

5.
Phys Rev Lett ; 111(8): 085004, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010449

RESUMO

Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

6.
Phys Rev Lett ; 111(4): 045001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931375

RESUMO

Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50) ng and 4000(-2970,+17 160) ng are observed.

7.
Phys Rev Lett ; 110(7): 075001, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166377

RESUMO

The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

8.
Rev Sci Instrum ; 83(10): 10E525, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23127032

RESUMO

Hohlraums are employed at the national ignition facility to convert laser energy into a thermal x-radiation drive, which implodes a fusion capsule, thus compressing the fuel. The x-radiation drive is measured with a low spectral resolution, time-resolved x-ray spectrometer, which views the region around the hohlraum's laser entrance hole. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the size of the hohlraum's opening ("clear aperture") and fraction of the measured x-radiation, which comes from this opening, must be known. The size of the clear aperture is measured with the time integrated static x-ray imager (SXI). A soft x-ray imaging channel has been added to the SXI to measure the fraction of x-radiation emitted from inside the clear aperture. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the peak of the x-ray spectrum of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed.

9.
Phys Rev Lett ; 108(13): 135006, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540711

RESUMO

We have imaged hard x-ray (>100 keV) bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. We measure 570 J in electrons with E>100 keV impinging on the fusion capsule under ignition drive conditions. This translates into an acceptable increase in the adiabat α, defined as the ratio of total deuterium-tritium fuel pressure to Fermi pressure, of 3.5%. The hard x-ray observables are consistent with detailed radiative-hydrodynamics simulations, including the sourcing and transport of these high energy electrons.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 2): 046409, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599318

RESUMO

By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large-scale hohlraum experiments with two tunable wavelengths and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry.

11.
Phys Rev Lett ; 106(8): 085003, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405579

RESUMO

The first soft x-ray radiation flux measurements from hohlraums using both a 96 and a 192 beam configuration at the National Ignition Facility have shown high x-ray conversion efficiencies of ∼85%-90%. These experiments employed gold vacuum hohlraums, 6.4 mm long and 3.55 mm in diameter, heated with laser energies between 150-635 kJ. The hohlraums reached radiation temperatures of up to 340 eV. These hohlraums for the first time reached coronal plasma conditions sufficient for two-electron processes and coronal heat conduction to be important for determining the radiation drive.

12.
Rev Sci Instrum ; 81(10): 10D938, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033965

RESUMO

On the National Ignition Facility (NIF), hot electrons generated in laser heated Hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the time integrated FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled Hohlraums heated by 96-192 NIF laser beams are presented.

13.
Rev Sci Instrum ; 81(10): 10E321, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034019

RESUMO

The first 96 and 192 beam vacuum Hohlraum target experiments have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr as viewed by DANTE representing an ∼20 times flux increase over NOVA/Omega scale Hohlraums. The vacuum Hohlraums were irradiated with 2 ns square laser pulses with energies between 150 and 635 kJ. They produced nearly Planckian spectra with about 30±10% more flux than predicted by the preshot radiation hydrodynamic simulations. To validate these results, careful verification of all component calibrations, cable deconvolution, and software analysis routines has been conducted. In addition, a half Hohlraum experiment was conducted using a single 2 ns long axial quad with an irradiance of ∼2×10(15) W/cm(2) for comparison with NIF Early Light experiments completed in 2004. We have also completed a conversion efficiency test using a 128-beam nearly uniformly illuminated gold sphere with intensities kept low (at 1×10(14) W/cm(2) over 5 ns) to avoid sensitivity to modeling uncertainties for nonlocal heat conduction and nonlinear absorption mechanisms, to compare with similar intensity, 3 ns OMEGA sphere results. The 2004 and 2009 NIF half-Hohlraums agreed to 10% in flux, but more importantly, the 2006 OMEGA Au Sphere, the 2009 NIF Au sphere, and the calculated Au conversion efficiency agree to ±5% in flux, which is estimated to be the absolute calibration accuracy of the DANTEs. Hence we conclude that the 30±10% higher than expected radiation fluxes from the 96 and 192 beam vacuum Hohlraums are attributable to differences in physics of the larger Hohlraums.

14.
Rev Sci Instrum ; 81(10): 10E538, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034065

RESUMO

The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 µm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

15.
Science ; 327(5970): 1228-31, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20110465

RESUMO

Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium-filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory.

16.
Phys Rev Lett ; 103(4): 045006, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19659366

RESUMO

We show that the measured stimulated Raman scattering (SRS) in a large-scale high-temperature plasma scales strongly with the plasma density, increasing by an order of magnitude when the electron density is increased by 20%. This is consistent with linear theory, including pump depletion, in a uniform plasma and, as the density is typically constrained by other processes, this effect will set a limit on drive laser beam intensity for forthcoming ignition experiments at the National Ignition Facility. Control of SRS at laser intensities consistent with 285 eV ignition hohlraums is achieved by using polarization smoothing which increases the intensity threshold for the onset of SRS by 1.6 +/- 0.2. These results were quantitatively predicted by full beam three-dimensional numerical laser-plasma interaction simulations.

17.
Phys Rev Lett ; 102(2): 025004, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257284

RESUMO

Radiative hydrodynamics simulations of ignition experiments show that energy transfer between crossing laser beams allows tuning of the implosion symmetry. A new full-scale, three-dimensional quantitative model has been developed for crossed-beam energy transfer, allowing calculations of the propagation and coupling of multiple laser beams and their associated plasma waves in ignition hohlraums. This model has been implemented in a radiative-hydrodynamics code, demonstrating control of the implosion symmetry by a wavelength separation between cones of laser beams.

18.
Rev Sci Instrum ; 79(10): 10F549, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044691

RESUMO

In experiments at the National Ignition Facility (NIF), the near backscatter imager materials need to maintain high optical transmission while exposed to hohlraum generated x rays. Glass plates are incorporated in the design to protect the optical scattering plates from x-ray damage. Radiation environments spanning those expected on NIF have been produced at the Omega Laser Facility by symmetric laser illumination of 1 mm sized gold spheres. The time-dependent ultraviolet transmission of sample glass plates was measured. The data are interpreted with a free electron absorption model. Combined with the simulations of the hohlraum x-ray emission, this model is used to predict the transmission of the glass plates on the NIF. We predict that the plates should perform adequately up to the peak of the laser pulse.

19.
Phys Rev Lett ; 101(11): 115002, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18851289

RESUMO

We demonstrate a significant reduction of stimulated Brillouin scattering by polarization smoothing in large-scale high-temperature hohlraum plasma conditions where filamentation is measured to be negligible. The stimulated Brillouin scattering experimental threshold (defined as the intensity at which 5% of the incident light is backscattered) is measured to increase by a factor of 1.7+/-0.2 when polarization smoothing is applied. An analytical model relevant to inertial confinement fusion plasma conditions shows that the measured reduction in backscatter with polarization smoothing results from the random spatial variation in polarization of the laser beam, not from the reduction in beam contrast.

20.
Phys Rev Lett ; 100(25): 255001, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643667

RESUMO

The first three-dimensional simulations of a high power 0.351 mum laser beam propagating through a high temperature hohlraum plasma are reported. We show that 3D fluid-based modeling of stimulated Brillouin scattering, including linear kinetic corrections, reproduces quantitatively the experimental measurements, provided it is coupled to detailed hydrodynamics simulation and a realistic description of the laser beam from its millimeter-size envelope down to the micron scale speckles. These simulations accurately predict the strong reduction of stimulated Brillouin scattering measured when polarization smoothing is used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...