Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Dev Neurosci ; 46: 92-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26287661

RESUMO

Chemotherapeutic regimens used for the treatment of Neuroblastoma (NB) cause long-term side effects in pediatric patients. NB arises in immature sympathetic nerve cells and primarily affects infants and children. A high rate of relapse in high-risk neuroblastoma (HRNB) necessitates the development of alternative strategies for effective treatment. This study investigated the efficacy of a small molecule, tolfenamic acid (TA), for enhancing the anti-proliferative effect of 13 cis-retinoic acid (RA) in HRNB cell lines. LA1-55n and SH-SY5Y cells were treated with TA (30µM) or RA (20µM) or both (optimized doses, derived from dose curves) for 48h and tested the effect on cell viability, apoptosis and selected molecular markers (Sp1, survivin, AKT and ERK1/2). Cell viability and caspase activity were measured using the CellTiter-Glo and Caspase-Glo kits. The apoptotic cell population was determined by flow cytometry with Annexin-V staining. The expression of Sp1, survivin, AKT, ERK1/2 and c-PARP was evaluated by Western blots. The combination therapy of TA and RA resulted in significant inhibition of cell viability (p<0.0001) when compared to individual agents. The anti-proliferative effect is accompanied by a decrease in Sp1 and survivin expression and an increase in apoptotic markers, Annexin-V positive cells, caspase 3/7 activity and c-PARP levels. Notably, TA+RA combination also caused down regulation of AKT and ERK1/2 suggesting a distinct impact on survival and proliferation pathways via signaling cascades. This study demonstrates that the TA mediated inhibition of Sp1 in combination with RA provides a novel therapeutic strategy for the effective treatment of HRNB in children.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Isotretinoína/farmacologia , Teratogênicos/farmacologia , ortoaminobenzoatos/farmacologia , Análise de Variância , Anexina A5/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Neuroblastoma/patologia , Fatores de Tempo
2.
Target Oncol ; 9(2): 135-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23609055

RESUMO

Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to inhibit human cancer cells and mouse tumor growth in some cancer models; however, its anti-leukemic response has not been evaluated. TA targets specificity protein (Sp) transcription factors that mediate the expression of several genes associated with cancer including survivin, a key member of inhibitor of apoptosis protein family. Our aim was to test the anti-leukemic efficacy of TA in pre-clinical experiments. The anti-leukemic response of TA was determined using Jurkat and Nalm-6 cell lines. Cells were treated with increasing (25/50/75 µM) concentrations of TA, and cell viability was measured at 24, 48, and 72 h post-treatment. TA showed a steady and consistent decrease in cell viability following a clear dose and time dependent response. Apoptosis and cell cycle analysis was performed using flow cytometry. Results showed a significant increase in the apoptotic fraction (annexin V positive) following TA treatment, while cell cycle phase distribution analysis showed G0/G1 arrest. TA-induced apoptosis was further confirmed by examining the activation of caspase 3/7 and the expression of cleaved PARP. TA modulated the expression of critical candidates associated with the early phases of cell cycle and validated its efficacy in causing G0/G1 arrest. The Western blot results revealed that TA significantly decreases Sp1 and survivin expression. These results demonstrate that the anti-leukemic response of TA occurs potentially through targeting Sp1 and inhibiting survivin and suggest the efficacy of TA as a novel therapeutic agent for leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia/patologia , ortoaminobenzoatos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas Inibidoras de Apoptose/efeitos dos fármacos , Leucemia/metabolismo , Survivina
3.
Tumour Biol ; 34(5): 2781-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23686785

RESUMO

Medulloblastoma (MB) is the most common malignancy in children arising in the brain. Morbidities associated with intensive therapy are serious concerns in treating MB. Our aim was to identify novel targets and agents with less toxicity for treating MB. Specificity protein 1 (Sp1) transcription factor regulates several genes involved in cell proliferation and cell survival including survivin, an inhibitor of apoptosis protein. We previously showed that tolfenamic acid (TA), a nonsteroidal anti-inflammatory drug, inhibits neuroblastoma cell growth by targeting Sp1. We investigated the anticancer activity of TA using human MB cell lines and a mouse xenograft model. DAOY and D283 cells were treated with vehicle (dimethyl sulfoxide) or TA (5-50 µg/ml), and cell viability was measured at 1-3 days posttreatment. TA inhibited MB cell growth in a time- and dose-dependent manner. MB cells were treated with vehicle or TA (10 µg/ml), and the effect on cell apoptosis was measured. Apoptosis was analyzed by flow cytometry (annexin V staining), and caspase 3/7 activity was determined using Caspase-Glo kit. The expression of Sp1, cleaved poly(ADP-ribose) polymerase (c-PARP), and survivin was determined by Western blot analysis. TA inhibited the expression of Sp1 and survivin and upregulated c-PARP. Athymic nude mice were subcutaneously injected with D283 cells and treated with TA (50 mg/kg, three times per week) for 4 weeks. TA caused a decrease of ~40 % in tumor weight and volume. The tumor growth inhibition was accompanied by a decrease in Sp1 and survivin expression in tumor tissue. These preclinical data demonstrate that TA acts as an anticancer agent in MB potentially targeting Sp1 and survivin.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , ortoaminobenzoatos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/patologia , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Nus , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Survivina , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , ortoaminobenzoatos/uso terapêutico
4.
J Exp Med ; 210(2): 321-37, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23359069

RESUMO

Although aberrant Notch activation contributes to leukemogenesis in T cells, its role in acute myelogenous leukemia (AML) remains unclear. Here, we report that human AML samples have robust expression of Notch receptors; however, Notch receptor activation and expression of downstream Notch targets are remarkably low, suggesting that Notch is present but not constitutively activated in human AML. The functional role of these Notch receptors in AML is not known. Induced activation through any of the Notch receptors (Notch1-4), or through the Notch target Hairy/Enhancer of Split 1 (HES1), consistently leads to AML growth arrest and caspase-dependent apoptosis, which are associated with B cell lymphoma 2 (BCL2) loss and enhanced p53/p21 expression. These effects were dependent on the HES1 repressor domain and were rescued through reexpression of BCL2. Importantly, activated Notch1, Notch2, and HES1 all led to inhibited AML growth in vivo, and Notch inhibition via dnMAML enhanced proliferation in vivo, thus revealing the physiological inhibition of AML growth in vivo in response to Notch signaling. As a novel therapeutic approach, we used a Notch agonist peptide that led to significant apoptosis in AML patient samples. In conclusion, we report consistent Notch-mediated growth arrest and apoptosis in human AML, and propose the development of Notch agonists as a potential therapeutic approach in AML.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Receptores Notch/metabolismo , Adolescente , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Criança , Proteínas de Ligação a DNA/genética , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores Notch/agonistas , Receptores Notch/genética , Transdução de Sinais , Fatores de Transcrição HES-1 , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Mol Carcinog ; 52(5): 377-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22213339

RESUMO

Current therapeutic options for recurrent neuroblastoma have poor outcomes that warrant the development of novel therapeutic strategies. Specificity protein (Sp) transcription factors regulate several genes involved in cell proliferation, survival, and angiogenesis. Sp1 regulates genes believed to be important determinants of the biological behavior of neuroblastoma. Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to induce the degradation of Sp proteins and may serve as a novel anti-cancer agent. The objective of this investigation was to examine the anti-cancer activity of TA using established human neuroblastoma cell lines. We tested the anti-proliferative effect of TA using SH-SY5Y, CHLA90, LA1 55n, SHEP, Be2c, CMP 13Y, and SMS KCNR cell lines. Cells were treated with TA (0/25/50/100 µM) and cell viability was measured at 24, 48, and 72 h post-treatment. Selected neuroblastoma cell lines were treated with 50 µM TA for 24 and 48 h and tested for cell apoptosis using Annexin-V staining. Caspase activity was measured with caspase 3/7 Glo kit. Cell lysates were prepared and the expression of Sp1, survivin, and c-PARP were evaluated through Western blot analysis. TA significantly inhibited the growth of neuroblastoma cells in a dose/time-dependent manner and significantly decreased Sp1 and survivin expression. Apart from cell cycle (G0/G1) arrest, TA caused significant increase in the apoptotic cell population, caspase 3/7 activity, and c-PARP expression. These results show that TA effectively inhibits neuroblastoma cell growth potentially through suppressing mitosis, Sp1, and survivin expression, and inducing apoptosis. These results show TA as a novel therapeutic agent for neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , ortoaminobenzoatos/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neuroblastoma/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fator de Transcrição Sp1/metabolismo , Survivina
6.
Clin Cancer Res ; 15(19): 6087-95, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19789303

RESUMO

PURPOSE: We sought to determine whether administration of a MGMT blocker, O(6)-benzyl guanine (O(6)BG), at an optimal biological dose alone or in combination with gemcitabine inhibits human pancreatic cancer cell growth. EXPERIMENTAL DESIGN: Human pancreatic cancer L3.6pl and PANC1 cells were treated with O(6)BG, either alone or in combination with gemcitabine, and the therapeutic efficacy and biological activity of these drug combinations were investigated. RESULTS: O(6)BG sensitized pancreatic cancer cells to gemcitabine. Protein and mRNA expression of MGMT, cyclin B1, cyclin B2, cyclin A, and ki-67 were significantly decreased in the presence of O(6)BG. In sharp contrast, protein expression and mRNA message of p21(cip1) were significantly increased. Interestingly, O(6)BG increases p53-mediated p21(cip1) transcriptional activity and suppresses cyclin B1. In addition, our results indicate that p53 is recruited to p21 promoter. Furthermore, an increase in p21(cip1) and a decrease in cyclin transcription are p53 dependent. The volume of pancreatic tumors was reduced by 27% in mice treated with gemcitabine alone, by 47% in those treated with O(6)BG alone, and by 65% in those mice given combination. Immunohistochemical analysis showed that O(6)BG inhibited expression of MGMT and cyclins, and increased expression of p21(cip1). Furthermore, there was a significant decrease in tumor cell proliferation and an increase in tumor cell apoptosis. CONCLUSIONS: Collectively, our results show that decreased MGMT expression is correlated with p53 activation, and significantly reduced primary pancreatic tumor growth. These findings suggest that O(6)BG either alone or in combination with gemcitabine may provide a novel and effective approach for the treatment of human pancreatic cancer.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma/patologia , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Guanina/análogos & derivados , Neoplasias Pancreáticas/patologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Carcinoma/genética , Carcinoma/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/fisiologia , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes p53/efeitos dos fármacos , Guanina/farmacologia , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...