Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7178, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168985

RESUMO

Asteroid (3200) Phaethon experiences extreme solar radiant heating ( ~ 750 °C) during perihelion (0.14 au), leading to comet-like activity. The regolith composition and mechanism of volatile emission are unknown but key to understanding JAXA's DESTINY+ mission data (fly-by in 2029) and the fate of near-Sun asteroids more generally. By subjecting CM chondrite fragments to fast, open system, cyclic heating (2-20 °C/min), simulating conditions on Phaethon we demonstrate that rapid heating rates combine with the low permeability, resulting in reactions between volatile gases and decomposing minerals. The retention of S-bearing gas limits the thermal decomposition of Fe-sulphides, allowing these minerals to survive repeated heating cycles. Slow escape of S-bearing gases provides a mechanism for repeated gas release from a thermally processed surface and, therefore the comet-like activity without requiring surface renewal to expose fresh material each perihelion cycle. We predict Phaethon regolith is composed of olivine, Fe-sulphides, Ca-sulphates and hematite.

2.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230195, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38736337

RESUMO

Micrometeorites are estimated to represent the main part of the present flux of extraterrestrial matter found on the Earth's surface and provide valuable samples to probe the interplanetary medium. Here, we describe large and representative collections of micrometeorites currently available to the scientific community. These include Antarctic collections from surface ice and snow, as well as glacial sediments from the eroded top of nunataks-summits outcropping from the icesheet-and moraines. Collections extracted from deep-sea sediments (DSS) produced a large number of micrometeorites, in particular, iron-rich cosmic spherules that are rarer in other collections. Collections from the old and stable surface of the Atacama Desert show that finding large numbers of micrometeorites is not restricted to polar regions or DSS. The advent of rooftop collections marks an important step into involving citizen science in the study of micrometeorites, as well as providing potential sampling locations over all latitudes to explore the modern flux. We explore their strengths of the collections to address specific scientific questions and their potential weaknesses. The future of micrometeorite research will involve the finding of large fossil micrometeorite collections and benefit from recent advances in sampling cosmic dust directly from the air. This article is part of the theme issue 'Dust in the Solar System and beyond'.

3.
Sci Adv ; 8(46): eabq3925, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383648

RESUMO

Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA