Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(34): 47055-47070, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985427

RESUMO

The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)-extracted from natural sources and acetate-increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities.


Assuntos
Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Esgotos
2.
Sci Total Environ ; 945: 173932, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880133

RESUMO

Bio-electrochemical systems (BESs) have recently been proposed as an efficient treatment technology to remove organic micropollutants from water treatment plants. In this study, we aimed to differentiate between sorption, electrochemical transport/degradation, and biodegradation. Using electro-active microorganisms and electrodes, we investigated organic micropollutant removal at environmentally relevant concentrations, clarifying the roles of sorption and electrochemical and biological degradation. The role of anodic biofilms on the removal of 10 relevant organic micropollutants was studied by performing separate sorption experiments on carbon-based electrodes (graphite felt, graphite rod, graphite granules, and granular activated carbon) and electrochemical degradation experiments at two different electrode potentials (-0.3 and 0 V). Granular activated carbon showed the highest sorption of micropollutants; applying a potential to graphite felt electrodes increased organic micropollutant removal. Removal efficiencies >80 % were obtained for all micropollutants at high anode potentials (+0.955 V), indicating that the studied compounds were more susceptible to oxidation than to reduction. All organic micropollutants showed removal when under bio-electrochemical conditions, ranging from low (e.g. metformin, 9.3 %) to exceptionally high removal efficiencies (e.g. sulfamethoxazole, 99.5 %). The lower removal observed under bio-electrochemical conditions when compared to only electrochemical conditions indicated that sorption to the electrode is key to guarantee high electrochemical degradation. The detection of transformation products of chloridazon and metformin indicated that (bio)-electrochemical degradation occurred. This study confirms that BES can treat some organic micropollutants through several mechanisms, which merits further investigation.


Assuntos
Biodegradação Ambiental , Técnicas Eletroquímicas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Eletrodos , Purificação da Água/métodos , Adsorção
3.
Ecotoxicol Environ Saf ; 279: 116510, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810284

RESUMO

Microplastics and organic micropollutants are two emerging contaminants that interact with each other in environmental and engineered systems. Sorption of organic micropollutants, such as pharmaceuticals, pesticides and industrial compounds, to microplastics can modify their bioavailability and biodegradation. The present study investigated the capacity of ultra-high density polyethylene particles (125 µm in diameter), before and after aging, to sorb 21 organic micropollutants at different environmentally relevant concentration. Furthermore, the biodegradation of these organic micropollutants by a biofilm microbial community growing on the microplastic surface was compared with the biodegradation by a microbial community originating from activated sludge. Among all tested organic micropollutants, propranolol (70%), trimethoprim (25%) and sotalol (15%) were sorbed in the presence of polyethylene particles. Growth of a biofilm on the polyethylene particles had a beneficial effect on the sorption of bromoxynil, caffeine and chloridazon and on the biodegradation of irbesartan, atenolol and benzotriazole. On the other hand, the biofilm limited the sorption of trimethoprim, propranolol, sotalol and benzotriazole and the biodegradation of 2,4-D. These results showed that ultra-high density polyethylene particles can affect both in a positive and negative way for the abiotic and biotic removal of organic micropollutants in wastewater. This project highlights the need for further investigation regarding the interaction between microplastics and organic micropollutants in the aquatic environment.


Assuntos
Biodegradação Ambiental , Biofilmes , Microplásticos , Polietileno , Propranolol , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Polietileno/química , Adsorção , Trimetoprima , Atenolol , Triazóis/química , Esgotos/química , Esgotos/microbiologia
4.
Sci Total Environ ; 928: 172339, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608893

RESUMO

The availability of suitable electron donors and acceptors limits micropollutant natural attenuation in oligotrophic groundwater. This study investigated how electron donors with different biodegradability (humics, dextran, acetate, and ammonium), and different oxygen concentrations affect the biodegradation of 15 micropollutants (initial concentration of each micropollutant = 50 µg/L) in simulated nitrate reducing aquifers. Tests mimicking nitrate reducing field conditions showed no micropollutant biodegradation, even with electron donor amendment. However, 2,4-dichlorophenoxyacetic acid and mecoprop were biodegraded under (micro)aerobic conditions with and without electron donor addition. The highest 2,4-dichlorophenoxyacetic acid and mecoprop biodegradation rates and removal efficiencies were obtained under fully aerobic conditions with amendment of an easily biodegradable electron donor. Under microaerobic conditions, however, amendment with easily biodegradable dissolved organic carbon (DOC) inhibited micropollutant biodegradation due to competition between micropollutants and DOC for the limited oxygen available. Microbial community composition was dictated by electron acceptor availability and electron donor amendment, not by micropollutant biodegradation. Low microbial community richness and diversity led to the absence of biodegradation of the other 13 micropollutants (such as bentazon, chloridazon, and carbamazepine). Finally, adaptation and potential growth of biofilms interactively determined the location of the micropollutant removal zone relative to the point of amendment. This study provides new insight on how to stimulate in situ micropollutant biodegradation to remediate oligotrophic groundwaters as well as possible limitations of this process.


Assuntos
Biodegradação Ambiental , Água Subterrânea , Nitratos , Oxigênio , Poluentes Químicos da Água , Água Subterrânea/química , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Oxigênio/metabolismo , Elétrons , Ácido 2,4-Diclorofenoxiacético/metabolismo
5.
Appl Microbiol Biotechnol ; 108(1): 294, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598011

RESUMO

Understanding the dynamic change in abundance of both fecal and opportunistic waterborne pathogens in urban surface water under different abiotic and biotic factors helps the prediction of microbiological water quality and protection of public health during recreational activities, such as swimming. However, a comprehensive understanding of the interaction among various factors on pathogen behavior in surface water is missing. In this study, the effect of salinity, light, and temperature and the presence of indigenous microbiota, on the decay/persistence of Escherichia coli and Pseudomonas aeruginosa in Rhine River water were tested during 7 days of incubation with varying salinity (0.4, 5.4, 9.4, and 15.4 ppt), with light under a light/dark regime (light/dark) and without light (dark), temperature (3, 12, and 20 °C), and presence/absence of indigenous microbiota. The results demonstrated that light, indigenous microbiota, and temperature significantly impacted the decay of E. coli. Moreover, a significant (p<0.01) four-factor interactive impact of these four environmental conditions on E. coli decay was observed. However, for P. aeruginosa, temperature and indigenous microbiota were two determinate factors on the decay or growth. A significant three-factor interactive impact between indigenous microbiota, temperature, and salinity (p<0.01); indigenous microbiota, light, and temperature (p<0.01); and light, temperature, and salinity (p<0.05) on the decay of P. aeruginosa was found. Due to these interactive effects, caution should be taken when predicting decay/persistence of E. coli and P. aeruginosa in surface water based on a single environmental condition. In addition, the different response of E. coli and P. aeruginosa to the environmental conditions highlights that E. coli monitoring alone underestimates health risks of surface water by non-fecal opportunistic pathogens, such as P. aeruginosa. KEY POINTS: Abiotic and biotic factors interactively affect decay of E. coli and P. aeruginosa E.coli and P.aeruginosa behave significantly different under the given conditions Only E. coli as an indicator underestimates the microbiological water quality.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Rios , Fezes , Água Doce
6.
Chemosphere ; 352: 141388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346507

RESUMO

Unconventional substrata like activated carbon or clay beads can enhance micropollutant removal in constructed wetlands. However, hydroponic materials widely used in horticulture have not yet been investigated for their potential to remove micropollutants. In addition, potential effect of plant species other than reeds on micropollutant removal has not been sufficiently investigated. Therefore, a nature-based, post-treatment technology called improved vertical flow constructed wetlands (CW) with hydroponic (H) materials (CWH) was designed by employing cocopeat and mineral with ornamental plant species syngonium and periwinkle. A mesocosm CWH system was tested in a climate-controlled greenhouse for 550 days for its potential to remove frequently found micropollutants in wastewater, namely sulfamethoxazole, trimethoprim, diclofenac, erythromycin, carbamazepine, pyrimethanil, tebuconazole, pymetrozine, atrazine and DEET from wastewater effluent. The main focus was to understand the contribution of sorption, microbial degradation and phytoremediation on the removal of those micropollutants. It was found that cocopeat showed a capacity for sorbing micropollutants, ranging between 80 and 99% of the compounds added while less than 10% sorption was observed for mineral wool. Additionally moderate to high biological removal (25-60 µg of compound/kg dry weight of substratum/day) for most of the studied compounds was observed in all the cocopeat biotic groups. Furthermore, it could be stated that plants appear not to be an important factor for micropollutant removal. The observed differences in removal between the cocopeat and mineral wool systems could be explained by the difference in physico-chemical properties of the substrata, where cocopeat has a higher water holding capacity, moisture content, nutrient and organic matter content, and a higher intraparticle porosity and surface area. This study revealed notable removal of persistent and mobile micropollutants in cocopeat CWH, namely carbamazepine (80-86%) and diclofenac (97-100%). These results demonstrate the potential beneficial use of hydroponic materials as substratum in more advanced constructed wetlands designed to remove micropollutants.


Assuntos
Compostos de Cálcio , Silicatos , Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Hidroponia , Diclofenaco , Poluentes Químicos da Água/análise , Plantas , Carbamazepina
7.
J Hazard Mater ; 468: 133759, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377902

RESUMO

Swine wastewater (SW) application introduces antibiotic resistance genes (ARGs) into farmland soils. However, ARG attenuation in SW-fertigated soils, especially those influenced by staple crops and soil type, remains unclear. This study investigated twelve soil ARGs and one mobile genetic element (MGE) in sandy loam, loam, and silt loam soils before and after SW application in wheat-planted and unplanted soils. The results revealed an immediate increase in the abundance of ARGs in soil by two orders of magnitude above background levels following SW application. After SW application, the soil total ARG abundance was attenuated, reaching background levels at 54 days; However, more individual ARGs were detected above the detection limit than pre-application. Among the 13 genes, acc(6')-lb, tetM, and tetO tended to persist in the soil during wheat harvest. ARG half-lives were up to four times longer in wheat-planted soils than in bare soils. Wheat planting decreased the persistence of acc(6')-lb, ermB, ermF, and intI2 but increased the persistence of others such as sul1 and sul2. Soil type had no significant impact on ARG and MGE fates. Our findings emphasize the need for strategic SW application and the consideration of crop cultivation effects to mitigate ARG accumulation in farmland soils.


Assuntos
Antibacterianos , Solo , Suínos , Animais , Antibacterianos/farmacologia , Águas Residuárias , Triticum/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Produtos Agrícolas/genética , Microbiologia do Solo , Esterco
8.
Biodegradation ; 35(3): 281-297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37439919

RESUMO

Groundwater is the most important source for drinking water in The Netherlands. Groundwater quality is threatened by the presence of pesticides, and biodegradation is a natural process that can contribute to pesticide removal. Groundwater conditions are oligotrophic and thus biodegradation can be limited by the presence and development of microbial communities capable of biodegrading pesticides. For that reason, bioremediation technologies such as bioaugmentation (BA) can help to enhance pesticide biodegradation. We studied the effect of BA using enriched mixed inocula in two column bioreactors that simulate groundwater systems at naturally occurring redox conditions (iron and sulfate-reducing conditions). Columns were operated for around 800 days, and two BA inoculations (BA1 and BA2) were conducted in each column. Inocula were enriched from different wastewater treatment plants (WWTPs) under different redox-conditions. We observed a temporary effect of BA1, reaching 100% removal efficiency of the pesticide 2,4-D after 100 days in both columns. In the iron-reducing column, 2,4-D removal was in general higher than under sulfate-reducing conditions demonstrating the influence of redox conditions on overall biodegradation. We observed a temporary shift in microbial communities after BA1 that is relatable to the increase in 2,4-D removal efficiency. After BA2 under sulfate-reducing conditions, 2,4-D removal efficiency decreased, but no change in the column microbial communities was observed. The present study demonstrates that BA with a mixed inoculum can be a valuable technique for improving biodegradation in anoxic groundwater systems at different redox-conditions.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Praguicidas/metabolismo , Anaerobiose , Biodegradação Ambiental , Ferro , Sulfatos/metabolismo , Ácido 2,4-Diclorofenoxiacético , Poluentes Químicos da Água/metabolismo
9.
Sci Total Environ ; 897: 165233, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394071

RESUMO

Micropollutant biodegradation is selected by the interplay among environmental conditions and microbial community composition. This study investigated how different electron acceptors, and different inocula with varying microbial diversity, pre-exposed to distinct redox conditions and micropollutants, affect micropollutant biodegradation. Four tested inocula comprised of agricultural soil (Soil), sediment from a ditch in an agricultural field (Ditch), activated sludge from a municipal WWTP (Mun AS), and activated sludge from an industrial WWTP (Ind AS). Removal of 16 micropollutants was investigated for each inoculum under aerobic, nitrate reducing, iron reducing, sulfate reducing, and methanogenic conditions. Micropollutant biodegradation was highest under aerobic conditions with removal of 12 micropollutants. Most micropollutants were biodegraded by Soil (n = 11) and Mun AS inocula (n = 10). A positive correlation was observed between inoculum community richness and the number of different micropollutants a microbial community initially degraded. The redox conditions to which a microbial community had been exposed appeared to positively affect micropollutant biodegradation performance more than pre-exposure to micropollutants. Additionally, depletion of the organic carbon present in the inocula resulted in lower micropollutant biodegradation and overall microbial activities, suggesting that i) an additional carbon source is needed to promote micropollutant biodegradation; and ii) overall microbial activity can be a good indirect indicator for micropollutant biodegradation activity. These results could help to develop novel micropollutant removal strategies.


Assuntos
Esgotos , Poluentes Químicos da Água , Águas Residuárias , Solo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Oxirredução , Carbono
10.
Water Res ; 241: 120146, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270951

RESUMO

Rapid sand filters (RSFs) have shown potential for removing organic micropollutants (OMPs) from groundwater. However, the abiotic removal mechanisms are not well understood. In this study, we collect sand from two field RSFs that are operated in series. The sand from the primary filter abiotically removes 87.5% of salicylic acid, 81.4% of paracetamol, and 80.2% of benzotriazole, while the sand from the secondary filter only removes paracetamol (84.6%). The field collected sand is coated by a blend of iron oxides (FeOx) and manganese oxides (MnOx) combined with organic matter, phosphate, and calcium. FeOx adsorbs salicylic acid via bonding of carboxyl group with FeOx. The desorption of salicylic acid from field sand indicates that salicylic acid is not oxidized by FeOx. MnOx adsorbs paracetamol through electrostatic interactions, and further transforms it into p-benzoquinone imine through hydrolysis-oxidation. FeOx significantly adsorbs organic matter, calcium, and phosphate, which in turn influences OMP removal. Organic matter on field sand surfaces limits OMP removal by blocking sorption sites on the oxides. However, calcium and phosphate on field sand support benzotriazole removal via surface complexation and hydrogen bonding. This paper provides further insight into the abiotic removal mechanisms of OMPs in field RSFs.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Ferro , Manganês , Cálcio , Acetaminofen , Filtração , Poluentes Químicos da Água/análise , Óxidos
11.
Environ Res ; 216(Pt 1): 114495, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208778

RESUMO

Antibiotic resistance is a global public health concern. Antibiotic usage in pigs makes swine wastewater (SW) a reservoir for antibiotic resistance genes (ARGs). SW is usually stored and treated in a three-chamber anaerobic pond (3-CAP) in medium and small pig farms in northern China. However, the yet unexplored presence of ARGs in SW during 3-CAP treatment may result in ARGs spreading into the environment if farmers apply SW to farmland as a liquid organic fertilizer. This study investigated the profiles of and changes in ARGs in SW during its treatment in 3-CAP over four seasons and analyzed the correlation between ARGs and bacterial phenotypes, along with the physicochemical parameters of the water. The results revealed that ARG abundance decreased considerably after 3-CAP treatment in April (47%), October (47%), and December (62%) but increased in May (43%) and August (73%). The ARG copies in the influent and other SW samples increased significantly from 107 copies/mL in April to 109 copies/mL in October and were maintained in December. The increase in ARG abundance was not as rapid as the growth of the bacterial population, resulting in lower relative abundance in October and December. Bacterial communities possessed more sul1 and tetM genes, which were also positively correlated with mobile genetic elements. After the 3-CAP treatment, 16% of antibiotics and 60% of heavy metals were removed, and both had a weak correlation with ARGs. Predicted phenotypes showed that gram-positive (G+) and gram-negative (G-) bacteria have different capacities for carrying ARGs. G+ bacteria carry more ARGs than G- bacteria. This study revealed the persistence of ARGs in SW after 3-CAP treatment over different seasons. Applying SW in the proper month will mitigate ARG dissemination to the environment.


Assuntos
Antibacterianos , Águas Residuárias , Suínos , Animais , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Estações do Ano , Genes Bacterianos , Lagoas , Anaerobiose , Resistência Microbiana a Medicamentos/genética , Bactérias , Fenótipo
12.
Ambio ; 52(1): 195-209, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36001251

RESUMO

Canals and canalized rivers form a major part of surface water systems in European delta cities and societal ambitions to use these waters increase. This is the first assessment of how suitability of these waters can improve for three important uses: transportation, thermal energy extraction (TEE) and recreation. We assess suitability with Suitability Indices (SIs) and identify which alterations in the water system are needed to improve SI scores in Amsterdam, The Netherlands, and Ghent, Belgium. The results show spatial variability in suitability scores. Current suitability for transportation is low (SI score = 1) to excellent (SI score = 4), for TEE fair (SI score = 2) to excellent (SI score = 4), and suitability for recreation is low (SI score = 1). Suitability could improve by enlarging specific waterway dimensions, increasing discharge and clarity, and by enhancing microbiological water quality. The same methodology can be applied to optimize designs for new water bodies and for more water uses.


Assuntos
Monitoramento Ambiental , Rios , Rios/microbiologia , Cidades , Monitoramento Ambiental/métodos , Recreação , Qualidade da Água
13.
World J Microbiol Biotechnol ; 38(12): 240, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36261779

RESUMO

Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.


Assuntos
Água Subterrânea , Praguicidas , Praguicidas/metabolismo , Solo , Água , Biodegradação Ambiental , Água Subterrânea/química
14.
Water Res ; 221: 118832, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35949068

RESUMO

Microbial removal of trace organic micropollutants (OMPs) from drinking water sources remains challenging. Nitrifying and heterotrophic bacteria in rapid sand filters (RSFs) are capable of biodegrading OMPs while growing on ammonia and dissolved organic matter (DOM). The loading patterns of ammonia and DOM may therefore affect microbial activities as well as OMP biodegradation. So far, there is very limited information on the effect of substrate loading on OMP biodegradation at environmentally relevant concentrations (∼ 1 µg/L) in RSFs. We investigated the biodegradation rates of 16 OMPs at various substrate loading rates and/or empty bed contact times (EBCT). The presence of DOM improved the biodegradation of paracetamol (41.8%) by functioning as supplementary carbon source for the heterotrophic degrader, while hindering the biodegradation of 2,4-D, mecoprop and benzotriazole due to substrate competition. Lower loading ratios of DOM/benzotriazole benefited benzotriazole biodegradation by reducing substrate competition. Higher ammonia loading rates enhanced benzotriazole removal by stimulating nitrification-based co-metabolism. However, stimulating nitrification inhibited heterotrophic activity, which in turn inhibited the biodegradation of paracetamol, 2,4-D and mecoprop. A longer EBCT promoted metformin biodegradation as it is a slowly biodegradable compound, but suppressed the biodegradation of paracetamol and benzotriazole due to limited substrate supply. Therefore, the optimal substrate loading pattern is contingent on the type of OMP, which can be chosen based on the priority compounds in practice. The overall results contribute to understanding OMP biodegradation mechanisms at trace concentrations and offer a step towards enhancing microbial removal of OMPs from drinking water by optimally using RSFs.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Ácido 2,4-Diclorofenoxiacético , Acetaminofen , Amônia , Filtração/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
15.
Environ Pollut ; 299: 118807, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007672

RESUMO

Groundwater quality is crucial for drinking water production, but groundwater resources are increasingly threatened by contamination with pesticides. As pesticides often occur at micropollutant concentrations, they are unattractive carbon sources for microorganisms and typically remain recalcitrant. Exploring microbial communities in aquifers used for drinking water production is an essential first step towards understanding the fate of micropollutants in groundwater. In this study, we investigated the interaction between groundwater geochemistry, pesticide presence, and microbial communities in an aquifer used for drinking water production. Two groundwater monitoring wells in The Netherlands were sampled in 2014, 2015, and 2016. In both wells, water was sampled from five discrete depths ranging from 13 to 54 m and was analyzed for geochemical parameters, pesticide concentrations and microbial community composition using 16S rRNA gene sequencing and qPCR. Groundwater geochemistry was stable throughout the study period and pesticides were heterogeneously distributed at low concentrations (µg L-1 range). Microbial community composition was also stable throughout the sampling period. Integration of a unique dataset of chemical and microbial data showed that geochemical parameters and to a lesser extent pesticides exerted selective pressure on microbial communities. Microbial communities in both wells showed similar composition in the deeper aquifer, where pumping results in horizontal flow. This study provides insight into groundwater parameters that shape microbial community composition. This information can contribute to the future implementation of remediation technologies to guarantee safe drinking water production.


Assuntos
Água Potável , Água Subterrânea , Microbiota , Poluentes Químicos da Água , Água Potável/análise , Monitoramento Ambiental , Água Subterrânea/química , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise , Poços de Água
16.
J Hazard Mater ; 424(Pt D): 127760, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34836694

RESUMO

The presence of organic micropollutant (OMP) in groundwater threatens drinking water quality and public health. Rapid sand filter (RSF) rely on biofilms with nitrifying and methanotrophic bacteria to remove ammonia and methane during drinking water production. Previous research observed the partial removal of OMPs with active nitrification and methane oxidation due to co-metabolic conversion of OMPs. However, the contribution of indigenous nitrifying and methanotrophic communities from RSF has yet to be fully explored. Accordingly, experiments were carried out with biofilm-covered sand collected from field-scale RSF, to assess the removal of nine OMPs by nitrifying and methanotrophic bacteria. Results indicated that stimulating nitrification resulted in significantly more removal of caffeine, 2,4-dichlorophenoxyacetic acid and bentazone. Stimulating methanotrophic conditions enhanced the removal of caffeine, benzotriazole, 2,4-dichlorophenoxyacetic acid and bentazone. Microbial community analysis based on 16 S rRNA gene sequencing revealed Nitrosomonas and Nitrospira are the dominant genus in the community under nitrifying conditions. The three genera Methylobacter, Methylomonas and Methylotenera were enriched under methanotrophic conditions. This study highlights that nitrifying and methanotrophic bacteria play important roles during OMP removal in field RSF. Furthermore, results suggest that bioaugmentation with an enriched nitrifying and methanotrophic culture is a promising approach to improve OMP removal in RSF.


Assuntos
Água Subterrânea , Purificação da Água , Amônia , Bactérias/genética , Reatores Biológicos , Filtração , Nitrificação , Oxirredução
17.
Chemosphere ; 280: 130793, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162094

RESUMO

Groundwater is the main source for drinking water production globally. Groundwater unfortunately can contain micropollutants (MPs) such as pesticides and/or pesticide metabolites. Biological remediation of MPs in groundwater requires an understanding of natural biodegradation capacity and the conditions required to stimulate biodegradation activity. Thus, biostimulation experiments are a valuable tool to assess pesticide biodegradation capacity of field microorganisms. To this end, groundwater samples were collected at a drinking water abstraction aquifer at two locations, five different depths. Biodegradation of the MPs BAM, MCPP and 2,4-D was assessed in microcosms with groundwater samples, either without amendment, or amended with electron acceptor (nitrate or oxygen) and/or carbon substrate (dissolved organic carbon (DOC)). Oxygen + DOC was the most successful amendment resulting in complete biodegradation of 2,4-D in all microcosms after 42 days. DOC was most likely used as a growth substrate that enhanced co-metabolic 2,4-D degradation with oxygen as electron acceptor. Different biodegradation rates were observed per groundwater sample. Overall, microorganisms from the shallow aquifer had faster biodegradation rates than those from the deep aquifer. Higher microbial activity was also observed in terms of CO2 production in the microcosms with shallow groundwater. Our results seem to indicate that shallow groundwater contains more active microorganisms, possibly due to their exposure to higher concentrations of both DOC and MPs. Understanding field biodegradation capacity is a key step towards developing further bioremediation-based technologies. Our results show that biostimulation has real potential as a technology for remediating MPs in aquifers in order to ensure safe drinking production.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Biodegradação Ambiental , Nitratos
18.
Biodegradation ; 32(4): 419-433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33877512

RESUMO

2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D's high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0-40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.


Assuntos
Herbicidas , Poluentes do Solo , Ácido 2,4-Diclorofenoxiacético , Biodegradação Ambiental , Brasil , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
19.
J Hazard Mater ; 407: 124386, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33144002

RESUMO

While removal of antibiotics in constructed wetland treatment systems (CWTS) has been described previously, few studies examined the synergistic effect of multiple design and operational parameters for improving antibiotic removal. This review describes the removal of 35 widely used antibiotics in CWTS covering the most common design parameters (flow configuration, substrate, plants) and operational parameters (hydraulic retention time/hydraulic loading rates, feeding mode, aeration, influent quality), and discusses how to tailor those parameters for improving antibiotic removal based on complex removal mechanisms. To achieve an overall efficient removal of antibiotics in CWTS, our principal component analysis indicated that optimization of flow configuration, selection of plant species, and compensation for low microbial activity at low temperature is the priority strategy. For instance, a hybrid-CWTS that integrates the advantages of horizontal and vertical subsurface flow CWTS may provide a sufficient removal performance at reasonable cost and footprint. To target removal of specific antibiotics, future research should focus on elucidating key mechanisms for their removal to guide optimization of the design and operational parameters. More efficient experimental designs (e.g., the Box-Behnken design) are recommended to determine the settings of the key parameters. These improvements would promote development of this environmentally friendly and cost-efficient technology for antibiotic removal.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Antibacterianos , Nitrogênio
20.
J Hazard Mater ; 388: 119361, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245001

RESUMO

Pharmaceuticals in water have adverse effects on aquatic environment. Anaerobic pharmaceutical biodegradation coupled to dissimilatory manganese(Mn) (IV)- or iron(Fe) (III)-oxides reduction is potentially efficient but unexplored. In this study, batch experiments were performed using different Mn(IV) and Fe(III) species with a microbial inoculum pre-cultivated with 15 mM chemically-synthesized Mn(IV) and 10 mg L-1 metoprolol. Results show 26% caffeine and 52% naproxen are degraded with Mn(IV) as terminal electron acceptor and insignificant biodegradation for other pharmaceuticals tested. Reduction of Mn(IV) from drinking water treatment is coupled to anaerobic biodegradation of metoprolol and propranolol, resulting in removal efficiencies of 96% and 31%, respectively. The results indicate that adsorption contributes to the pharmaceutical removal during the first 10 days of incubation, while biodegradation is the main removal mechanism in the whole period. Fe(III) can also be used as electron acceptor in anaerobic pharmaceutical biodegradation. Over half of the added metoprolol is degraded with both chemically-synthesized Fe(III) and Fe(III)-citrate as terminal electron acceptors. However, this process did not occur when using Fe(III) from drinking water treatment or Fe(III)-based sorbents. This study indicates that anaerobic pharmaceutical biodegradation coupled to dissimilatory Mn(IV) or Fe(III) reduction is possible, and promising for application to cleaning wastewater treatment plant effluents.


Assuntos
Compostos Férricos/química , Compostos de Manganês/química , Preparações Farmacêuticas/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Modelos Teóricos , Oxirredução , Águas Residuárias/química , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA