Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36675841

RESUMO

Nosema ceranae is a microsporidian that infects Apis species. Recently, natural compounds have been proposed to control nosemosis and reduce its transmission among honey bees. We investigated how ethanolic extract of Tetrigona apicalis's propolis and chito-oligosaccharide (COS) impact the health of N. ceranae-infected Apis dorsata workers. Nosema ceranae spores were extracted from the guts of A. florea workers and fed 106 spores dissolved in 2 µL 50% (w/v) sucrose solution to A. dorsata individually. These bees were then fed a treatment consisting either of 0% or 50% propolis extracts or 0 ppm to 0.5 ppm COS. We found that propolis and COS significantly increased the number of surviving bees and lowered the infection ratio and spore loads of N. ceranae-infected bees 14 days post-infection. Our results suggest that propolis extract and COS could be possible alternative treatments to reduce N. ceranae infection in A. dorsata. Moreover, N. ceranae isolated from A. florea can damage the ventricular cells of A. dorsata, thereby lowering its survival. Our findings highlight the importance of considering N. ceranae infections and using alternative treatments at the community level where other honey bee species can act as a reservoir and readily transmit the pathogen among the honey bee species.

2.
Insects ; 12(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680632

RESUMO

There are multiple feedback mechanisms involved in appetite regulation, which is an integral part of maintaining energetic homeostasis. Older forager honey bees, in comparison to newly emerged bees and nurse bees, are known to have highly fluctuating hemolymph trehalose levels, higher appetite changes due to starvation, and higher octopamine levels in the brain. What remains unknown is if the hemolymph trehalose and octopamine levels interact with one another and how this varies as the bee ages. We manipulated trehalose and octopamine levels across age using physiological injections and found that nurse and forager bees increase their appetite levels due to increased octopamine levels in the brain. This is further enhanced by lower trehalose levels in the hemolymph. Moreover, nurse bees with high octopamine levels in the brain and low trehalose levels had the same appetite levels as untreated forager bees. Our findings suggest that the naturally higher levels of octopamine as the bee ages may result in higher sensitivity to fluctuating trehalose levels in the hemolymph that results in a more direct way of assessing the energetic state of the individual. Consequently, forager bees have a mechanism for more precise regulation of appetite in comparison to newly emerged and nurse bees.

3.
J Invertebr Pathol ; 185: 107672, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597621

RESUMO

Nosema ceranae is an intracellular microsporidian pathogen that lives in the midgut ventricular cells of all known honey bee Apis species. We suspect that N. ceranae may also cause energetic stress in the giant honey bee because this parasite is known to disrupt nutrient absorption resulting in energetic stress in the honey bee species Apis mellifera. To understand how N. ceranae impacts the energetic stress of the giant honey bee, A. dorsata, we measured the hemolymph trehalose levels of experimentally infected giant honey bees on days three, five, seven, and fourteen post infection (p.i.). We also measured the hypopharyngeal gland protein content, the total midgut proteolytic enzyme activity, honey bee survival, infection ratio, and spore loads comparing infected and uninfected honey bees across the same time frame. Nosema ceranae-infected honey bees had significantly lowered survival, trehalose levels, hypopharyngeal gland protein content, and midgut proteolytic enzyme activity. We found an increasing level of parasitic loads and infection ratio of N. ceranae-infected bees after inoculation. Collectively, our results suggest that the giant honey bee suffers from energetic stress and limited nutrient absorption from a N. ceranae infection, which results in lowered survival in comparison to uninfected honey bees. Our findings highlight that other honey bee species besides A. mellifera are susceptible to microsporidian pathogens that they harbor, which results in negative effects on health and survival. Therefore, these pathogens might be transmitted at a community level, in the natural environment, resulting in negative health effects of multiple honey bee species.


Assuntos
Abelhas/microbiologia , Hemolinfa/microbiologia , Nosema/fisiologia , Nutrientes/fisiologia , Absorção Fisiológica , Aminoácidos/fisiologia , Animais , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/microbiologia , Longevidade , Esporos Fúngicos/fisiologia
4.
J Invertebr Pathol ; 185: 107666, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34530028

RESUMO

Beekeepers need sustainable control options to treat Nosema ceranae infection in colonies of western honey bees (Apis mellifera L.) they manage. Propolis is a natural product derived from plant resins and contains chemical compounds with potential antimicrobial activity against N. ceranae. Here, we determined the efficacy of propolis from A. mellifera (USA) and Tetrigona apicalis (stingless bees, Thailand) colonies as treatments for N. ceranae infection in honey bee workers. Newly emerged bees were individually fed 2 µL of 50% (w/v) sucrose solution containing 1 × 105N. ceranae spores. Following this, the infected bees were treated with 50% propolis extracted from A. mellifera or T. apicalis hives and fed in 50% sucrose solution (v/v). All bees were maintained at 34 ± 2 °C and 55 ± 5% RH. Dead bees were counted daily for 30 d to calculate survival. We also determined infection rate (# infected bees/100 bees), infectivity (number of spores per bee) and protein content in the hypopharyngeal glands and hemolymph on 7, 14, and 21 d post infection as measures of bee health. Propolis from both bee species significantly reduced bee mortality, infection rate and infectivity compared with those of untreated bees and led to significantly greater protein contents in hypopharyngeal glands and hemolymph in treated bees than in untreated ones (p < 0.0001). In conclusion, propolis from A. mellifera and T. apicalis colonies shows promise as a control against N. ceranae infection in honey bees.


Assuntos
Abelhas/fisiologia , Agentes de Controle Biológico/farmacologia , Nosema/fisiologia , Controle Biológico de Vetores , Própole/farmacologia , Animais , Controle de Insetos , Tailândia
5.
Pathogens ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206455

RESUMO

Nosema ceranae is a large contributing factor to the most recent decline in honey bee health worldwide. Developing new alternative treatments against N. ceranae is particularly pressing because there are few treatment options available and therefore the risk of increased antibiotic resistance is quite high. Recently, natural products have demonstrated to be a promising avenue for finding new effective treatments against N. ceranae. We evaluated the effects of propolis extract of stingless bee, Tetrigona apicalis and chito-oligosaccharide (COS) on giant honey bees, Apis dorsata, experimentally infected with N. ceranae to determine if these treatments could improve the health of the infected individuals. Newly emerged Nosema-free bees were individually inoculated with 106N. ceranae spores per bee. We fed infected and control bees the following treatments consisting of 0%, 50%, propolis extracts, 0 ppm and 0.5 ppm COS in honey solution (w/v). Propolis extracts and COS caused a significant increase in trehalose levels in hemolymph, protein contents, survival rates and acini diameters of the hypopharyngeal glands in infected bees. Our results suggest that propolis and COS could improve the health of infected bees. Further research is needed to determine the underlying mechanisms responsible for the improved health of the infected bees.

6.
Microb Ecol ; 77(4): 877-889, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30288544

RESUMO

The recent global decline in Western honeybee (Apis mellifera) populations is of great concern for pollination and honey production worldwide. Declining honeybee populations are frequently infected by the microsporidian pathogen Nosema ceranae. This species was originally described in the Asiatic honeybee (Apis cerana), and its identification in global A. mellifera hives could result from a recent host transfer. Recent genome studies have found that global populations of this parasite are polyploid and that humans may have fueled their global expansion. To better understand N. ceranae biology, we investigated its genetic diversity within part of their native range (Thailand) and among different hosts (A. mellifera, A. cerana) using both PCR and genome-based methods. We find that Thai N. ceranae populations share many SNPs with other global populations and appear to be clonal. However, in stark contrast with previous studies, we found that these populations also carry many SNPs not found elsewhere, indicating that these populations have evolved in their current geographic location for some time. Our genome analyses also indicate the potential presence of diploidy within Thai populations of N. ceranae.


Assuntos
Abelhas/microbiologia , Genoma Fúngico , Nosema/genética , Polimorfismo de Nucleotídeo Único , Animais , Genômica , Reação em Cadeia da Polimerase , Tailândia
7.
Forensic Sci Int ; 266: 63-67, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27213919

RESUMO

Chrysomya rufifacies represents an important indicator species in forensic entomology that is often used to estimate the minimum postmortem interval (PMImin) in crime scene investigation. However, developmental rates differ locally, so that estimates should be based on regionally generated development data. Therefore, we determined the developmental rates of C. rufifacies within its native range in Thailand under nine constant temperature regimes: 15, 18, 21, 24, 27, 30, 33, 36 and 39°C. Developmental times from egg to adult varied among the temperatures and were longest at 15°C (618h) and shortest at 33°C (168h). No pupae emerged at 39°C. We used linear regression models to estimate the minimum development threshold temperatures for each life stage: egg stage=9.5°C, first to second instar=10.8°C, second to third instar=11.5°C, third instar to pupariation=11.4°C, pupariation to adults=5.0°C; the minimum threshold to complete all larvae stages was 11.1°C and to complete all life stages from eggs to adult was 9.5°C. We further generated isomorphen and isomegalen diagrams that can be used to quickly estimate the PMImin for forensic applications.


Assuntos
Dípteros/crescimento & desenvolvimento , Ciências Forenses , Estágios do Ciclo de Vida/fisiologia , Temperatura , Animais , Larva , Pupa , Tailândia
8.
PLoS One ; 10(5): e0126330, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018139

RESUMO

Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.


Assuntos
Abelhas/microbiologia , Nosema/patogenicidade , Animais , Abelhas/fisiologia , Contagem de Colônia Microbiana , Larva/microbiologia , Longevidade , Nosema/genética , Pupa/microbiologia , Esporos Fúngicos , Taxa de Sobrevida
9.
J Invertebr Pathol ; 106(2): 236-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20965196

RESUMO

Adult workers of Apis cerana, Apis florea and Apis mellifera from colonies heavily infected with Nosema ceranae were selected for molecular analyses of the parasite. PCR-specific 16S rRNA primers were designed, cloned, sequenced and compared to GenBank entries. The sequenced products corresponded to N. ceranae. We then infected A. cerana with N. ceranae spores isolated from A. florea workers. Newly emerged bees from healthy colonies were fed 10,000, 20,000 and 40,000 spores/bee. There were significant dosage dependent differences in bee infection and survival rates. The ratio of infected cells to non-infected cells increased at 6, 10 and 14 d post infection. In addition, hypopharyngeal glands of bees from the control group had significantly higher protein concentrations than infected groups. Bees infected with 40,000 spores/bee had the lowest protein concentrations. Thus, N. ceranae isolated from A. florea is capable of infecting another bee species, impairing hypopharyngeal gland protein production and reducing bee survival in A. cerana.


Assuntos
Abelhas/microbiologia , Nosema/isolamento & purificação , Animais , Sequência de Bases , DNA Fúngico/genética , Hipofaringe/microbiologia , Incidência , Microsporidiose/epidemiologia , Dados de Sequência Molecular , Nosema/genética , Tailândia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA