Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150499

RESUMO

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Assuntos
Proteína Fosfatase 2 , Proteína Fosfatase 2/metabolismo , Jordânia , Fosforilação , Mutação , Holoenzimas/genética , Holoenzimas/metabolismo
2.
Res Sq ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106033

RESUMO

Eribulin (ERI), clinically utilized for locally advanced or metastatic breast tumors, has shown potential links to the immune system. Notably, the cGAS-STING pathway, a key component of innate immunity, has gained prominence. Yet, limited reports explore ERI's effects on the cGAS-STING pathway. Additionally, the nuclear presence of cGAS remains poorly understood. This study uniquely delves into ERI's impact on both the cytosolic cGAS-STING pathway and nuclear cGAS. ERI enhances nuclear localization of cGAS, resulting in hyper-activation of the cGAS-STING pathway in triple-negative breast cancer cells. Reduction of cGAS heightened both cell proliferation and ERI sensitivity. In clinical data using ERI in a neo-adjuvant setting, patients with low cGAS cases exhibited reduced likelihood of achieving pathological complete response after ERI treatment. These findings illuminate the potential of cGAS and IFNß as predictive biomarkers for ERI sensitivity, providing valuable insights for personalized breast cancer treatment strategies.

3.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066309

RESUMO

An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.

4.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625202

RESUMO

Multiple myeloma (MM), the second most common hematological malignancy, is generally considered incurable because of the development of drug resistance. We previously reported that hyaluronan and proteoglycan link protein 1 (HAPLN1) produced by stromal cells induces activation of NF-κB, a tumor-supportive transcription factor, and promotes drug resistance in MM cells. However, the identity of the cell surface receptor that detects HAPLN1 and thereby engenders pro-tumorigenic signaling in MM cells remains unknown. Here, we performed an unbiased cell surface biotinylation assay and identified chaperonin 60 (CH60) as the direct binding partner of HAPLN1 on MM cells. Cell surface CH60 specifically interacted with TLR4 to evoke HAPLN1-induced NF-κB signaling, transcription of anti-apoptotic genes, and drug resistance in MM cells. Collectively, our findings identify a cell surface CH60-TLR4 complex as a HAPLN1 receptor and a potential molecular target to overcome drug resistance in MM cells.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , NF-kappa B/metabolismo , Chaperonina 60 , Sobrevivência Celular , Receptor 4 Toll-Like
5.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715673

RESUMO

The widespread use of fluorescence microscopy has prompted the ongoing development of tools aiming to improve resolution and quantification accuracy for study of biological questions. Current calibration and quantification tools for fluorescence images face issues with usability/user experience, lack of automation, and comprehensive multidimensional measurement/correction capabilities. Here, we developed 3D-Speckler, a versatile, and high-throughput image analysis software that can provide fluorescent puncta quantification measurements such as 2D/3D particle size, spatial location/orientation, and intensities through semi-automation in a single, user-friendly interface. Integrated analysis options such as 2D/3D local background correction, chromatic aberration correction, and particle matching/filtering are also encompassed for improved precision and accuracy. We demonstrate 3D-Speckler microscope calibration capabilities by determining the chromatic aberrations, field illumination uniformity, and response to nanometer-scale emitters above and below the diffraction limit of our imaging system using multispectral beads. Furthermore, we demonstrated 3D-Speckler quantitative capabilities for offering insight into protein architectures and composition in cells.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Software , Calibragem , Microscopia de Fluorescência/métodos , Tamanho da Partícula
6.
Nucleic Acids Res ; 49(21): 12211-12233, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34865122

RESUMO

Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.


Assuntos
Imunoterapia/métodos , Metástase Neoplásica/imunologia , Fatores de Transcrição/imunologia , Neoplasias de Mama Triplo Negativas , Animais , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia
7.
PLoS Biol ; 18(12): e3000975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306668

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cromatina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/genética , Simulação por Computador , Células HEK293 , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
8.
Curr Biol ; 28(21): R1250-R1252, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30399347

RESUMO

The Rod-Zw10-Zwilch complex localizes to kinetochores during mitosis. New studies reveal that this complex plays a critical role in driving the expansion of the outer domain of unattached kinetochores, in addition to its known role in the control of the spindle assembly checkpoint.


Assuntos
Cinetocoros , Fuso Acromático , Proteínas de Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Mitose
9.
Curr Biol ; 28(17): 2697-2704.e3, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174190

RESUMO

Kinesin-5 is a highly conserved homo-tetrameric protein complex responsible for crosslinking microtubules and pushing spindle poles apart. The budding yeast Kinesin-5, Cin8, is highly concentrated at kinetochores in mitosis before anaphase, but its functions there are largely unsolved. Here, we show that Cin8 localizes to kinetochores in a cell-cycle-dependent manner and concentrates near the microtubule binding domains of Ndc80 at metaphase. Cin8's kinetochore localization depends on the Ndc80 complex, kinetochore microtubules, and the Dam1 complex. Consistent with its kinetochore localization, a Cin8 deletion induces a loss of tension at the Ndc80 microtubule binding domains and a major delay in mitotic progression. Cin8 associates with Protein Phosphatase 1 (PP1), and mutants that inhibit its PP1 binding also induce a loss of tension at the Ndc80 microtubule binding domains and delay mitotic progression. Taken together, our results suggest that Cin8-PP1 plays a critical role at kinetochores to promote accurate chromosome segregation by controlling Ndc80 attachment to microtubules.


Assuntos
Segregação de Cromossomos/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Cinesinas/metabolismo , Proteína Fosfatase 1/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos , Regulação Enzimológica da Expressão Gênica , Cinesinas/genética , Cinetocoros , Proteína Fosfatase 1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Cell Biol ; 217(10): 3446-3463, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30154187

RESUMO

Robust kinetochore-microtubule (kMT) attachment is critical for accurate chromosome segregation. G2/M-specific depletion of human Cdt1 that localizes to kinetochores in an Ndc80 complex-dependent manner leads to abnormal kMT attachments and mitotic arrest. This indicates an independent mitotic role for Cdt1 in addition to its prototypic function in DNA replication origin licensing. Here, we show that Cdt1 directly binds to microtubules (MTs). Endogenous or transiently expressed Cdt1 localizes to both mitotic spindle MTs and kinetochores. Deletion mapping of Cdt1 revealed that the regions comprising the middle and C-terminal winged-helix domains but lacking the N-terminal unstructured region were required for efficient MT binding. Mitotic kinase Aurora B interacts with and phosphorylates Cdt1. Aurora B-phosphomimetic Cdt1 exhibited attenuated MT binding, and its cellular expression induced defective kMT attachments with a concomitant delay in mitotic progression. Thus we provide mechanistic insight into how Cdt1 affects overall kMT stability in an Aurora B kinase phosphorylation-dependent manner; which is envisioned to augment the MT-binding of the Ndc80 complex.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Aurora Quinase B/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto , Células HEK293 , Células HeLa , Humanos , Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Fuso Acromático/genética
11.
EMBO J ; 37(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29973362

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and key regulator of cell cycle progression. Since APC/C promotes the degradation of mitotic cyclins, it controls cell cycle-dependent oscillations in cyclin-dependent kinase (CDK) activity. Both CDKs and APC/C control a large number of substrates and are regulated by analogous mechanisms, including cofactor-dependent activation. However, whereas substrate dephosphorylation is known to counteract CDK, it remains largely unknown whether deubiquitinating enzymes (DUBs) antagonize APC/C substrate ubiquitination during mitosis. Here, we demonstrate that Cezanne/OTUD7B is a cell cycle-regulated DUB that opposes the ubiquitination of APC/C targets. Cezanne is remarkably specific for K11-linked ubiquitin chains, which are formed by APC/C in mitosis. Accordingly, Cezanne binds established APC/C substrates and reverses their APC/C-mediated ubiquitination. Cezanne depletion accelerates APC/C substrate degradation and causes errors in mitotic progression and formation of micronuclei. These data highlight the importance of tempered APC/C substrate destruction in maintaining chromosome stability. Furthermore, Cezanne is recurrently amplified and overexpressed in numerous malignancies, suggesting a potential role in genome maintenance and cancer cell proliferation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Instabilidade Cromossômica , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteólise , Ciclossomo-Complexo Promotor de Anáfase/genética , Enzimas Desubiquitinantes/genética , Endopeptidases/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Micronúcleos com Defeito Cromossômico , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Ubiquitinação
12.
J Cell Biol ; 217(5): 1869-1882, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29490939

RESUMO

Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution.


Assuntos
Luz , Microscopia de Fluorescência/métodos , Fotodegradação , Animais , Arabidopsis/citologia , Linhagem Celular , Núcleo Celular/metabolismo , Fluorescência , Fungos/citologia , Humanos , Imageamento Tridimensional , Modelos Biológicos , Reprodutibilidade dos Testes , Imagem com Lapso de Tempo
13.
Elife ; 72018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323636

RESUMO

Two-color fluorescence co-localization in 3D (three-dimension) has the potential to achieve accurate measurements at the nanometer length scale. Here, we optimized a 3D fluorescence co-localization method that uses mean values for chromatic aberration correction to yield the mean separation with ~10 nm accuracy between green and red fluorescently labeled protein epitopes within single human kinetochores. Accuracy depended critically on achieving small standard deviations in fluorescence centroid determination, chromatic aberration across the measurement field, and coverslip thickness. Computer simulations showed that large standard deviations in these parameters significantly increase 3D measurements from their true values. Our 3D results show that at metaphase, the protein linkage between CENP-A within the inner kinetochore and the microtubule-binding domain of the Ndc80 complex within the outer kinetochore is on average ~90 nm. The Ndc80 complex appears fully extended at metaphase and exhibits the same subunit structure in vivo as found in vitro by crystallography.


Assuntos
Proteína Centromérica A/análise , Imageamento Tridimensional/métodos , Cinetocoros/química , Metáfase , Microscopia Confocal/métodos , Proteínas Nucleares/análise , Imagem Óptica/métodos , Proteínas do Citoesqueleto , Células HeLa , Humanos
14.
J Biol Chem ; 292(42): 17178-17189, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28900032

RESUMO

The mitotic spindle is composed of dynamic microtubules and associated proteins that together direct chromosome movement during mitosis. The spindle plays a vital role in accurate chromosome segregation fidelity and is a therapeutic target in cancer. Nevertheless, the molecular mechanisms by which many spindle-associated proteins function remains unknown. The nucleolar and spindle-associated protein NUSAP1 is a microtubule-binding protein implicated in spindle stability and chromosome segregation. We show here that NUSAP1 localizes to dynamic spindle microtubules in a unique chromosome-centric pattern, in the vicinity of overlapping microtubules, during metaphase and anaphase of mitosis. Mass spectrometry-based analysis of endogenous NUSAP1 interacting proteins uncovered a cell cycle-regulated interaction between the RanBP2-RanGAP1-UBC9 SUMO E3 ligase complex and NUSAP1. Like NUSAP1 depletion, RanBP2 depletion impaired the response of cells to the microtubule poison Taxol. NUSAP1 contains a conserved SAP domain (SAF-A/B, Acinus, and PIAS). SAP domains are common among many other SUMO E3s, and are implicated in substrate recognition and ligase activity. We speculate that NUSAP1 contributes to accurate chromosome segregation by acting as a co-factor for RanBP2-RanGAP1-UBC9 during cell division.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Segregação de Cromossomos/efeitos dos fármacos , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Paclitaxel/farmacologia , Domínios Proteicos , Fuso Acromático/genética , Fuso Acromático/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
15.
Cancer Res ; 77(18): 4881-4893, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760857

RESUMO

The centromere regulates proper chromosome segregation, and its dysfunction is implicated in chromosomal instability (CIN). However, relatively little is known about how centromere dysfunction occurs in cancer. Here, we define the consequences of phosphorylation by cyclin E1/CDK2 on a conserved Ser18 residue of centromere-associated protein CENP-A, an essential histone H3 variant that specifies centromere identity. Ser18 hyperphosphorylation in cells occurred upon loss of FBW7, a tumor suppressor whose inactivation leads to CIN. This event on CENP-A reduced its centromeric localization, increased CIN, and promoted anchorage-independent growth and xenograft tumor formation. Overall, our results revealed a pathway that cyclin E1/CDK2 activation coupled with FBW7 loss promotes CIN and tumor progression via CENP-A-mediated centromere dysfunction. Cancer Res; 77(18); 4881-93. ©2017 AACR.


Assuntos
Autoantígenos/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/patologia , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias do Colo/patologia , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas F-Box/metabolismo , Proteínas Oncogênicas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Centrômero , Proteína Centromérica A , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Proteína 7 com Repetições F-Box-WD , Feminino , Histonas/metabolismo , Humanos , Fosforilação , Células Tumorais Cultivadas
16.
Nat Chem Biol ; 12(6): 411-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043190

RESUMO

Protein kinase signaling along the kinetochore-centromere axis is crucial to assure mitotic fidelity, yet the details of its spatial coordination are obscure. Here, we examined how pools of human Polo-like kinase 1 (Plk1) within this axis control signaling events to elicit mitotic functions. To do this, we restricted active Plk1 to discrete subcompartments within the kinetochore-centromere axis using chemical genetics and decoded functional and phosphoproteomic signatures of each. We observe distinct phosphoproteomic and functional roles, suggesting that Plk1 exists and functions in discrete pools along this axis. Deep within the centromere, Plk1 operates to assure proper chromosome alignment and segregation. Thus, Plk1 at the kinetochore is a conglomerate of an observable bulk pool coupled with additional functional pools below the threshold of microscopic detection or resolution. Although complex, this multiplicity of locales provides an opportunity to decouple functional and phosphoproteomic signatures for a comprehensive understanding of Plk1's kinetochore functions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Humanos , Quinase 1 Polo-Like
17.
Nat Cell Biol ; 18(4): 382-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26974660

RESUMO

The Ndc80 complex (Ndc80, Nuf2, Spc24 and Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule- and MAP-binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule-binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule-binding interactions with the Ndc80 and Dam1 complexes.


Assuntos
Centrômero/metabolismo , Cromossomos Fúngicos/metabolismo , Cinetocoros/metabolismo , Proteínas Luminescentes , Microtúbulos/metabolismo , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Imagem com Lapso de Tempo
18.
Neuron ; 89(1): 83-99, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26748089

RESUMO

Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento/genética , Mitose/genética , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia
19.
Nat Commun ; 6: 8161, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345214

RESUMO

The Ndc80 complex, which mediates end-on attachment of spindle microtubules, is linked to centromeric chromatin in human cells by two inner kinetochore proteins, CENP-T and CENP-C. Here to quantify their relative contributions to Ndc80 recruitment, we combine measurements of kinetochore protein copy number with selective protein depletion assays. This approach reveals about 244 Ndc80 complexes per human kinetochore (∼14 per kinetochore microtubule), 215 CENP-C, 72 CENP-T and only 151 Ndc80s as part of the KMN protein network (1:1:1 Knl1, Mis12 and Ndc80 complexes). Each CENP-T molecule recruits ∼2 Ndc80 complexes; one as part of a KMN network. In contrast, ∼40% of CENP-C recruits only a KMN network. Replacing the CENP-C domain that binds KMN with the CENP-T domain that recruits both an Ndc80 complex and KMN network yielded functional kinetochores. These results provide a quantitative picture of the linkages between centromeric chromatin and the microtubule-binding Ndc80 complex at the human kinetochore.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas do Citoesqueleto , Imunofluorescência , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Immunoblotting , Imagem Óptica
20.
Dev Cell ; 30(6): 717-30, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268173

RESUMO

Constitutive centromere-associated network (CCAN) proteins, particularly CENP-C, CENP-T, and the CENP-H/-I complex, mechanically link CENP-A-containing centromeric chromatin within the inner kinetochore to outer kinetochore proteins, such as the Ndc80 complex, that bind kinetochore microtubules. Accuracy of chromosome segregation depends critically upon Aurora B phosphorylation of Ndc80/Hec1. To determine how CCAN protein architecture mechanically constrains intrakinetochore stretch between CENP-A and Ndc80/Hec1 for proper Ndc80/Hec1 phosphorylation, we used super-resolution fluorescence microscopy and selective protein depletion. We found that at bi-oriented chromosomes in late prometaphase cells, CENP-T is stretched ∼16 nm to the inner end of Ndc80/Hec1, much less than expected for full-length CENP-T. Depletion of various CCAN linker proteins induced hyper-intrakinetochore stretch (an additional 20-60 nm) with corresponding significant decreases in Aurora B phosphorylation of Ndc80/Hec1. Thus, proper intrakinetochore stretch is required for normal kinetochore function and depends critically on all the CCAN mechanical linkers to the Ndc80 complex.


Assuntos
Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Fuso Acromático/metabolismo , Aurora Quinase B/metabolismo , Proteína Centromérica A , Proteínas do Citoesqueleto , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...