Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(2): 634-649, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32961551

RESUMO

The exocrine-gland secreting peptide (ESP)gene family encodes proteinaceous pheromones that are recognized by the vomeronasal organ in mice. For example, ESP1 is a male pheromone secreted in tear fluid that regulates socio-sexual behavior, and ESP22 is a juvenile pheromone that suppresses adult sexual behavior. The family consists of multiple genes and has been identified only in mouse and rat genomes. The coding region of a mouse ESP gene is separated into two exons, each encoding signal and mature sequences. Here, we report the origin and evolution of the ESP gene family. ESP genes were found only in the Muridea and Cricetidae families of rodents, suggesting a recent origin of ESP genes in the common ancestor of murids and cricetids. ESP genes show a great diversity in number, length, and sequence among different species as well as mouse strains. Some ESPs in rats and golden hamsters are expressed in the lacrimal gland and the salivary gland. We also found that a mature sequence of an ESP gene showed overall sequence similarity to the α-globin gene. The ancestral ESP gene seems to be generated by recombination of a retrotransposed α-globin gene with the signal-encoding exon of the CRISP2 gene located adjacent to the ESP gene cluster. This study provides an intriguing example of molecular tinkering in rapidly evolving species-specific proteinaceous pheromone genes.


Assuntos
Evolução Molecular , Família Multigênica , Feromônios/genética , Roedores/genética , Animais , Cricetinae , Camundongos , Ratos
2.
DNA Res ; 27(4)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966557

RESUMO

The revision of the sub-order Microchiroptera is one of the most intriguing outcomes in recent mammalian molecular phylogeny. The unexpected sister-taxon relationship between rhinolophoid microbats and megabats, with the exclusion of other microbats, suggests that megabats arose in a relatively short period of time from a microbat-like ancestor. In order to understand the genetic mechanism underlying adaptive evolution in megabats, we determined the whole-genome sequences of two rousette megabats, Leschenault's rousette (Rousettus leschenaultia) and the Egyptian fruit bat (R. aegyptiacus). The sequences were compared with those of 22 other mammals, including nine bats, available in the database. We identified that megabat genomes are distinct in that they have extremely low activity of SINE retrotranspositions, expansion of two chemosensory gene families, including the trace amine receptor (TAAR) and olfactory receptor (OR), and elevation of the dN/dS ratio in genes for immunity and protein catabolism. The adaptive signatures discovered in the genomes of megabats may provide crucial insight into their distinct evolution, including key processes such as virus resistance, loss of echolocation, and frugivorous feeding.


Assuntos
Quirópteros/genética , Evolução Molecular , Filogenia , Animais , Genômica , Sistema Imunitário , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA