Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(2): 151422, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38795505

RESUMO

Besides the fission-fusion dynamics, the cellular distribution of mitochondria has recently emerged as a critical biological parameter in regulating mitochondrial function and cell survival. We previously found that mitochondrial clustering on the nuclear periphery, or monopolar perinuclear mitochondrial clustering (MPMC), accompanies the anticancer activity of air plasma-activated medium (APAM) against glioblastoma and human squamous cell carcinoma, which is closely associated with oxidant-dependent tubulin remodeling and mitochondrial fragmentation. Accordingly, this study investigated the regulatory roles of nitric oxide (NO) in the anticancer activity of APAM. Time-lapse analysis revealed a time-dependent increase in NO accompanied by MPMC. In contrast, APAM caused minimal increases in MPMC and NO levels in nontransformed cells. NO, hydroxyl radicals, and lipid peroxide levels increased near the damaged nuclear periphery, possibly within mitochondria. NO scavenging prevented tubulin remodeling, MPMC, perinuclear oxidant production, nuclear damage, and cell death. Conversely, synthetic NO donors augmented all the prodeath events and acted synergistically with APAM. Salinomycin, an emerging drug against multidrug-resistant cancers, had similar NO-dependent effects. These results suggest that APAM and salinomycin induce NO-dependent cell death, where MPMC and oxidative mitochondria play critical roles. Our findings encourage further investigations on MPMC as a potential target for NO-driven anticancer agents against drug-resistant cancers.

2.
Eur J Cell Biol ; 102(4): 151346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572557

RESUMO

Cold atmospheric plasmas and plasma-treated solutions (PTSs) have emerged as promising approaches in cancer treatment because of their tumor-selective actions. While oxidative stress is critical for their effects, the precise mechanisms, including chemical mediators, remain obscure. Previously, we reported that air plasma-activated medium (APAM) exhibited tumor-selective anticancer activity. The fragmentation of mitochondria and their asymmetrical assembly around the peripheral regions of the damaged nucleus, namely, monopolar perinuclear mitochondrial clustering (MPMC), proceed to the effect. Subsequently, we found that APAM had a substantial amount of O3 in addition to hydrogen peroxide (H2O2), nitrile (NO2-), and nitrate (NO3-). In the present study, we investigated the possible role of O3 in the anticancer effect. For this purpose, we created a nitrogen oxide-free ozonated medium ODM. ODM exhibited potent cytotoxicity against various cancer but not nonmalignant cells. ODM also increased MPMC, hydroxyl radicals, lipid peroxides, and their shifts to perinuclear sites in cancer cells. Catalase and iron chelation prevented these events and cytotoxicity. ODM also decreases the intracellular labile irons while increasing those within mitochondria. ODM had substantial H2O2, but this oxidant failed to cause MPMC and cytotoxicity. These results show that ODM can mimic the effects of APAM, including MPMC and tumor-selective anticancer effects. The findings suggest that O3 is critical in mediating the anticancer effects of APAM by triggering oxidative cell death caused by H2O2 and iron.


Assuntos
Neoplasias , Ozônio , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Ozônio/farmacologia , Ferro , Morte Celular , Estresse Oxidativo , Neoplasias/patologia
3.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163042

RESUMO

Intractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy, which eliminates cancers effectively and safely, is the current clinical choice. Since aggressive tumors are substantially resistant to multidisciplinary therapies that target apoptosis, tumor-specific activation of another cell death modality is a promising avenue for meeting this goal. Here, we report that a cold atmospheric air plasma-activated medium (APAM) can kill OS and OC by causing a unique mitochondrial clustering. This event was named monopolar perinuclear mitochondrial clustering (MPMC) based on its characteristic unipolar mitochondrial perinuclear accumulation. The APAM caused apoptotic and nonapoptotic cell death. The APAM increased mitochondrial ROS (mROS) and cell death, and the antioxidants such as N-acetylcysteine (NAC) prevented them. MPMC occurred following mitochondrial fragmentation, which coincided with nuclear damages. MPMC was accompanied by mitochondrial lipid peroxide (mLPO) accumulation and prevented by NAC, Ferrostatin-1, and Nocodazole. In contrast, the APAM induced minimal cell death, mROS generation, mLPO accumulation, and MPMC in fibroblasts. These results suggest that MPMC occurs in a tumor-specific manner via mitochondrial oxidative stress and microtubule-driven mitochondrial motility. MPMC induction might serve as a promising target for exerting tumor-specific cytotoxicity.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Mitocôndrias/metabolismo , Neoplasias Bucais/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Gases em Plasma/administração & dosagem , Animais , Neoplasias Ósseas/metabolismo , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Humanos , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias Bucais/metabolismo , Osteossarcoma/metabolismo , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Oncol ; 11: 593127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150606

RESUMO

Non-thermal atmospheric pressure plasma (NTAPP)-activated liquids have emerged as new promising anticancer agents because they preferentially injure malignant cells. Here, we report plasma-activated infusion (PAI) as a novel NTAPP-based anti-neoplastic agent. PAI was prepared by irradiating helium NTAP to form a clinically approved infusion fluid. PAI dose-dependently killed malignant melanoma and osteosarcoma cell lines while showing much lower cytotoxic effects on dermal and lung fibroblasts. We found that PAI and salinomycin (Sal), an emerging anticancer stem cell agent, mutually operated as adjuvants. The combined administration of PAI and Sal was much more effective than single-agent application in reducing the growth and lung metastasis of osteosarcoma allografts with minimal adverse effects. Mechanistically, PAI explicitly induced necroptosis and increased the phosphorylation of receptor-interacting protein 1/3 rapidly and transiently. PAI also suppressed the ambient autophagic flux by activating the mammalian target of the rapamycin pathway. PAI increased the phosphorylation of Raptor, Rictor, and p70-S6 kinase, along with decreased LC3-I/II expression. In contrast, Sal promoted autophagy. Moreover, Sal exacerbated the mitochondrial network collapse caused by PAI, resulting in aberrant clustering of fragmented mitochondrial in a tumor-specific manner. Our findings suggest that combined administration of PAI and Sal is a promising approach for treating these apoptosis-resistant cancers.

5.
Int J Mol Sci ; 21(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635638

RESUMO

Aspirin (acetylsalicylic acid) and its metabolite salicylate, have an anti-melanoma effect by evoking mitochondrial dysfunction through poorly understood mechanisms. Depolarization of the plasma membrane potential leads to voltage-gated Ca2+ entry (VGCE) and caspase-3 activation. In the present study, we investigated the role of depolarization and VGCE in aspirin's anti-melanoma effect. Aspirin and to a lesser extent, salicylate (≥2.5 mM) induced a rapid (within seconds) depolarization, while they caused comparable levels of depolarization with a lag of 2~4 h. Reactive oxygen species (ROS) generation also occurred in the two-time points, and antioxidants abolished the early ROS generation and depolarization. At the same concentrations, the two drugs induced apoptotic and necrotic cell death in a caspase-independent manner, and antioxidants and Ca2+ channel blockers prevented cell death. Besides ROS generation, reduced mitochondrial Ca2+ (Ca2+m) and mitochondrial membrane potential preceded cell death. Moreover, the cells expressed the Cav1.2 isoform of l-type Ca2+ channel, and knockdown of Cav1.2 abolished the decrease in Ca2+m. Our findings suggest that aspirin and salicylate induce Ca2+m remodeling, mitochondrial dysfunction, and cell death via ROS-dependent depolarization and VGCE activation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Canais de Cálcio Tipo L/metabolismo , Melanoma/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/uso terapêutico , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
6.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31940976

RESUMO

Allium vegetables such as garlic (Allium sativum L.) are rich in organosulfur compounds that prevent human chronic diseases, including cancer. Of these, diallyl trisulfide (DATS) exhibits anticancer effects against a variety of tumors, including malignant melanoma. Although previous studies have shown that DATS increases intracellular calcium (Ca2+) in different cancer cell types, the role of Ca2+ in the anticancer effect is obscure. In the present study, we investigated the Ca2+ pathways involved in the anti-melanoma effect. We used melittin, the bee venom that can activate a store-operated Ca2+ entry (SOCE) and apoptosis, as a reference. DATS increased apoptosis in human melanoma cell lines in a Ca2+-dependent manner. It also induced mitochondrial Ca2+ (Ca2+mit) overload through intracellular and extracellular Ca2+ fluxes independently of SOCE. Strikingly, acidification augmented Ca2+mit overload, and Ca2+ channel blockers reduced the effect more significantly under acidic pH conditions. On the contrary, acidification mitigated SOCE and Ca2+mit overload caused by melittin. Finally, Ca2+ channel blockers entirely inhibited the anti-melanoma effect of DATS. Our findings suggest that DATS explicitly evokes Ca2+mit overload via a non-SOCE, thereby displaying the anti-melanoma effect.


Assuntos
Compostos Alílicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Melanoma , Mitocôndrias/metabolismo , Proteínas de Neoplasias , Neoplasias Cutâneas , Sulfetos/farmacologia , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Mitocôndrias/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
7.
Int J Oncol ; 54(5): 1734-1746, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896851

RESUMO

In a variety of cancer cell types, the pharmacological and genetic blockade of autophagy increases apoptosis induced by various anticancer drugs. These observations suggest that autophagy counteracts drug­induced apoptosis. We previously reported that in human melanoma and osteosarcoma cells, autophagy inhibitors, such as 3­methyladenine and chloroquine increased the sensitivity to apoptosis induced by tumor necrosis factor­related apoptosis­inducing ligand (TRAIL). In the present study, we report that different autophagy inhibitors regulate the mitochondrial network and calcium (Ca2+) dynamics in these cells. We found that compared to tumor cells, normal fibroblasts were more resistant to the cytotoxicity of TRAIL and autophagy inhibitors used either alone or in combination. Notably, TRAIL increased the autophagic flux in the tumor cells, but not in the fibroblasts. Live­cell imaging revealed that in tumor cells, TRAIL evoked modest mitochondrial fragmentation, while subtoxic concentrations of the autophagy inhibitors led to mitochondrial fusion. Co­treatment with TRAIL and subtoxic concentrations of the autophagy inhibitors resulted in severe mitochondrial fragmentation, swelling and clustering, similar to what was observed with autophagy inhibitors at toxic concentrations. The enhanced aberration of the mitochondrial network was preceded by a reduction in mitochondrial Ca2+ loading and store­operated Ca2+ entry. On the whole, the findings of this study indicate that co­treatment with TRAIL and autophagy inhibitors leads to increased mitochondrial Ca2+ and network dysfunction in a tumor­selective manner. Therefore, the co­administration of TRAIL and autophagy inhibitors may prove to be a promising tumor­targeting approach for the treatment of TRAIL­resistant cancer cells.


Assuntos
Neoplasias Ósseas/metabolismo , Cálcio/metabolismo , Cloroquina/farmacologia , Melanoma/metabolismo , Osteossarcoma/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Autofagia/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Melanoma/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteossarcoma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...