Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Int Med Res ; 50(11): 3000605221135446, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36324277

RESUMO

OBJECTIVE: To determine the incidence and significance of ventilator avoidance in patients with critical coronavirus disease 2019 (COVID-19). METHODS: This prospective observational cohort study evaluated hospital mortality and 1-year functional outcome among critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated acute respiratory distress syndrome (ARDS). The explanatory variable was ventilator avoidance, modeled as 'initial refusal' of intubation (yes/no). Modified Rankin Scale (mRS) scores were obtained from surviving patients (or their surrogates) via phone or email questionnaire. RESULTS: Among patients for whom intubation was recommended (n = 102), 40 (39%) initially refused (95% confidence interval [CI] 30%, 49%). The risk of death was 79.3% (49/62) in those who did not initially refuse intubation compared with 77.5% (31/40) in those who initially refused, with an adjusted odds ratio for death of 1.27 (95% CI 0.47, 3.48). The distribution of 1-year mRS scores was not significantly different between groups. CONCLUSION: Among critically ill patients with COVID-19-associated ARDS, ventilator avoidance was common, but was not associated with increased in-hospital mortality or 1-year functional outcome.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Estado Terminal , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia , Ventiladores Mecânicos
2.
J Infect Dis ; 218(4): 572-580, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29617879

RESUMO

Background: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children. To date, no vaccine is approved for the broad population of healthy infants. MEDI8897, a potent anti-RSV fusion antibody with extended serum half-life, is currently under clinical investigation as a potential passive RSV vaccine for all infants. As a ribonucleic acid virus, RSV is prone to mutation, and the possibility of viral escape from MEDI8897 neutralization is a potential concern. Methods: We generated RSV monoclonal antibody (mAb)-resistant mutants (MARMs) in vitro and studied the effect of the amino acid substitutions identified on binding and viral neutralization susceptibility to MEDI8897. The impact of resistance-associated mutations on in vitro growth kinetics and the prevalence of these mutations in currently circulating strains of RSV in the United States was assessed. Results: Critical residues identified in MARMs for MEDI8897 neutralization were located in the MEDI8897 binding site defined by crystallographic analysis. Substitutions in these residues affected the binding of mAb to virus, without significant impact on viral replication in vitro. The frequency of natural resistance-associated polymorphisms was low. Conclusions: Results from this study provide insights into the mechanism of MEDI8897 escape and the complexity of monitoring for emergence of resistance.


Assuntos
Substituição de Aminoácidos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Fatores Imunológicos/farmacologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Sítios de Ligação , Produtos Biológicos/farmacologia , Cristalografia por Raios X , Farmacorresistência Viral , Frequência do Gene , Humanos , Evasão da Resposta Imune , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Testes de Neutralização , Prevalência , Conformação Proteica , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Estados Unidos/epidemiologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
3.
Sci Transl Med ; 9(388)2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469033

RESUMO

Prevention of respiratory syncytial virus (RSV) illness in all infants is a major public health priority. However, no vaccine is currently available to protect this vulnerable population. Palivizumab, the only approved agent for RSV prophylaxis, is limited to high-risk infants, and the cost associated with the requirement for dosing throughout the RSV season makes its use impractical for all infants. We describe the development of a monoclonal antibody as potential RSV prophylaxis for all infants with a single intramuscular dose. MEDI8897*, a highly potent human antibody, was optimized from antibody D25, which targets the prefusion conformation of the RSV fusion (F) protein. Crystallographic analysis of Fab in complex with RSV F from subtypes A and B reveals that MEDI8897* binds a highly conserved epitope. MEDI8897* neutralizes a diverse panel of RSV A and B strains with >50-fold higher activity than palivizumab. At similar serum concentrations, prophylactic administration of MEDI8897* was ninefold more potent than palivizumab at reducing pulmonary viral loads by >3 logs in cotton rats infected with either RSV A or B subtypes. MEDI8897 was generated by the introduction of triple amino acid substitutions (YTE) into the Fc domain of MEDI8897*, which led to more than threefold increased half-life in cynomolgus monkeys compared to non-YTE antibody. Considering the pharmacokinetics of palivizumab in infants, which necessitates five monthly doses for protection during an RSV season, the high potency and extended half-life of MEDI8897 support its development as a cost-effective option to protect all infants from RSV disease with once-per-RSV-season dosing in the clinic.


Assuntos
Palivizumab/uso terapêutico , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Vírus Sinciciais Respiratórios/patogenicidade , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Palivizumab/farmacocinética , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos
5.
Crit Care ; 18(1): R3, 2014 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24387680

RESUMO

INTRODUCTION: A major pathophysiologic mechanism in sepsis is impaired host immunity which results in failure to eradicate invading pathogens and increased susceptibility to secondary infections. Although many immunosuppressive mechanisms exist, increased expression of the inhibitory receptor programmed cell death 1 (PD-1) and its ligand (PD-L1) are thought to play key roles. The newly recognized phenomenon of T cell exhaustion is mediated in part by PD-1 effects on T cells. This study tested the ability of anti-PD-1 and anti-PD-L1 antibodies to prevent apoptosis and improve lymphocyte function in septic patients. METHODS: Blood was obtained from 43 septic and 15 non-septic critically-ill patients. Effects of anti-PD-1, anti-PD-L1, or isotype-control antibody on lymphocyte apoptosis and interferon gamma (IFN-γ) and interleukin-2 (IL-2) production were quantitated by flow cytometry. RESULTS: Lymphocytes from septic patients produced decreased IFN-γ and IL-2 and had increased CD8 T cell expression of PD-1 and decreased PD-L1 expression compared to non-septic patients (P<0.05). Monocytes from septic patients had increased PD-L1 and decreased HLA-DR expression compared to non-septic patients (P<0.01). CD8 T cell expression of PD-1 increased over time in ICU as PD-L1, IFN-γ, and IL2 decreased. In addition, donors with the highest CD8 PD-1 expression together with the lowest CD8 PD-L1 expression also had lower levels of HLA-DR expression in monocytes, and an increased rate of secondary infections, suggestive of a more immune exhausted phenotype. Treatment of cells from septic patients with anti-PD-1 or anti-PD-L1 antibody decreased apoptosis and increased IFN-γ and IL-2 production in septic patients; (P<0.01). The percentage of CD4 T cells that were PD-1 positive correlated with the degree of cellular apoptosis (P<0.01). CONCLUSIONS: In vitro blockade of the PD-1:PD-L1 pathway decreases apoptosis and improves immune cell function in septic patients. The current results together with multiple positive studies of anti-PD-1 and anti-PD-L1 in animal models of bacterial and fungal infections and the relative safety profile of anti-PD-1/anti-PD-L1 in human oncology trials to date strongly support the initiation of clinical trials testing these antibodies in sepsis, a disorder with a high mortality.


Assuntos
Anticorpos Anti-Idiotípicos/administração & dosagem , Antígeno B7-H1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Sepse/tratamento farmacológico , Sepse/metabolismo , Linfócitos T/metabolismo , Adulto , Idoso , Anticorpos Anti-Idiotípicos/imunologia , Antígeno B7-H1/biossíntese , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/biossíntese , Sepse/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
6.
J Gen Virol ; 94(Pt 8): 1691-1700, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23559480

RESUMO

Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that is constitutively highly expressed by type I alveolar epithelial cells. Here, we report that RAGE protected HEK cells from RSV-induced cell death and reduced viral titres in vitro. RAGE appeared to interact directly with the F protein, but, rather than inhibiting RSV entry into host cells, virus replication and budding, membrane-expressed RAGE or soluble RAGE blocked F-protein-mediated syncytium formation and sloughing. These data indicate that RAGE may contribute to protecting the lower airways from RSV by inhibiting the formation of syncytia, viral spread, epithelial damage and airway obstruction.


Assuntos
Células Epiteliais/virologia , Células Gigantes/virologia , Interações Hospedeiro-Patógeno , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Vírus Sincicial Respiratório Humano/patogenicidade , Proteínas Virais de Fusão/metabolismo , Células Cultivadas , Humanos
7.
J Virol ; 86(24): 13524-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23035218

RESUMO

Human rhinovirus species C (HRV-C) was recently discovered using molecular diagnostic techniques and is associated with lower respiratory tract disease, particularly in children. HRV-C cannot be propagated in immortalized cell lines, and currently sinus organ culture is the only system described that is permissive to HRV-C infection ex vivo. However, the utility of organ culture for studying HRV-C biology is limited. Here, we report that a previously described HRV-C derived from an infectious cDNA, HRV-C15, infects and propagates in fully differentiated human airway epithelial cells but not in undifferentiated cells. We demonstrate that this differentiated epithelial cell culture system supports infection and replication of a second virus generated from a cDNA clone, HRV-C11. We show that HRV-C15 virions preferentially bind fully differentiated airway epithelial cells, suggesting that the block to replication in undifferentiated cells is at the step of viral entry. Consistent with previous reports, HRV-C15 utilizes a cellular receptor other than ICAM-1 or LDLR for infection of differentiated epithelial cells. Furthermore, we demonstrate that HRV-C15 replication can be inhibited by an HRV 3C protease inhibitor (rupintrivir) but not an HRV capsid inhibitor previously under clinical development (pleconaril). The HRV-C cell culture system described here provides a powerful tool for studying the biology of HRV-C and the discovery and development of HRV-C inhibitors.


Assuntos
Brônquios/virologia , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia , Replicação Viral , Sequência de Bases , Brônquios/citologia , Diferenciação Celular , Primers do DNA , Células Epiteliais/virologia , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Picornaviridae/patologia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...