Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 248: 114108, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709743

RESUMO

Aquatic environments play important roles in the dissemination of clinically-relevant antibiotic resistance genes (ARGs) and pathogens. Limited knowledge exists about the prevalence of clinically-relevant acquired resistance genes in the marine environment, especially in Norway. The aim of the current study was to investigate the presence of and characterize self-transmissible resistance plasmids from Bergen harbor seawater, with exogenous-plasmid capture, using a green fluorescent protein (GFP)-tagged Escherichia coli strain as a recipient. We obtained transconjugants resistant against ampicillin and cefotaxime from four of the 13 samples processed. Nine transconjugants, selected on the basis of antibiotic sensitivity patterns, were sequenced, using Illumina MiSeq and Oxford Nanopore MinION platforms. Ten different plasmids (ranging from 35 kb to 136 kb) belonging to incompatibility groups IncFII/IncFIB/Col156, IncFII, IncI1 and IncB/O/K/Z were detected among these transconjugants. Plasmid p1A1 (IncFII/IncFIB/Col156, 135.7 kb) carried resistance genes blaTEM-1, dfrA17, sul1, sul2, tet(A), mph(A), aadA5, aph(3″)-Ib and aph(6)-Id, conferring resistance against six different classes of antibiotics. Plasmid p1A4 carried blaCTX-M-55, lnu(F), aadA17 and aac(3)-IId. Cephalosporinase blaCMY-2 was detected on plasmids captured from an area impacted by wastewater from a local marine aquarium. Along with ARGs, some plasmids also carried virulence factors, such as enterotoxins, adhesion factors and siderophores. Our study demonstrates the presence of clinically-important multidrug-resistance conjugative plasmids in seawater from Bergen harbor, which have the potential to be transferred to human microbiota. The results highlight the need for surveillance of antibiotic resistance in the environment, as suggested by the World Health Organization, especially in low prevalence settings like Norway.


Assuntos
Infecções por Escherichia coli , Humanos , Infecções por Escherichia coli/epidemiologia , Virulência , Escherichia coli/genética , Antibacterianos/farmacologia , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
2.
Int J Hyg Environ Health ; 242: 113967, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398801

RESUMO

Klebsiella pneumoniae (Kp) can cause hospital- and community acquired infections. Although, Kp is widespread in the environment, very little is known about the genetic diversity and pathogenicity of Kp from the marine environment. The aim of our study was to understand the genetic diversity, resistome and pathogenic potential of 87 Kp isolates from the Norwegian marine environment, using whole-genome sequencing. We identified 50 sequence types, including globally disseminated sequence types associated with multidrug resistance or hypervirulence. Ten isolates carried the yersiniabactin loci. Acquired antibiotic resistance genes were identified in six Kp isolates. Heavy metal resistance genes were widespread among the isolates, with 71% carrying genes encoding resistance to copper, silver, arsenic, nickel and/or mercury. Co-occurrence of antibiotic resistance genes and heavy metal resistance genes was seen in five Kp isolates. Phylogenetic analysis revealed a close genetic relationship between Kp 2016-1200 ST25 isolated from blue mussels (Mytilus edulis) and a clinical isolate reported in Germany. To the best of our knowledge, this study provides the first comprehensive account of genetic diversity among Kp from the marine environment. Our study reveals high diversity of Kp in the Norwegian marine environment and seafood, including globally disseminated pathogenic sequence types carrying clinically relevant antibiotic resistance genes and virulence factors, as well as several heavy metal resistance genes.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Variação Genética , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Filogenia
3.
Ecotoxicol Environ Saf ; 226: 112788, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571418

RESUMO

The aim of this study was to examine antibiotic resistance profiles and diversity of ß-lactamases in Escherichia coli present within the population and the potential spread of resistant E. coli into the receiving environment using city-scale sewage surveillance. In E. coli isolates from ECC plates without antibiotics from ten influent samples (n = 300), highest resistance was observed against ampicillin (16.6%), sulfamethoxazole (9.7%) and trimethoprim (9.0%), while in effluent samples (n = 262) it was against sulfamethoxazole (11.8%), ampicillin (11.5%) and tetracycline (8.8%). All isolates (n = 123) obtained on cefotaxime-containing plates were multidrug-resistant. Several clinically important antibiotic resistance genes (ARGs) were detected in 46 E. coli isolates subjected to whole-genome sequencing, including carbapenemases like NDM-6, VIM-1 and OXA-48-variant, as well as tigecycline resistance gene tet(X4). CTX-M-15 was the most prevalent (42.9%) extended-spectrum ß-lactamase among cefotaxime-resistant isolates, followed by CTX-M-27 (31.4%) and CTX-M-14 (17.1%), resembling clinical prevalence in Norway. Most of the sequenced isolates carried other clinically relevant ARGs, such as dfrA17, sul1, sul2, tet(A), aph(6)-Id, aph(3'')-Ib and aadA5. Sixteen different sequence types (STs) were identified, including ST131 (39.1%), ST38 (10.9%) and ST69 (8.7%). One E. coli isolate belonging to novel ST (ST11874) carried multiple virulence factors including genotoxin, salmochelin, aerobactin and yersiniabactin, suggesting that this isolate has potential to cause health concerns in future. Our study reveals presence of clinically relevant ARGs like blaNDM-6 and tet(X4) in pathogenic strains, which have so far not been reported from the clinics in Norway. Our study may thus, provide a framework for population-based surveillance of antibiotic resistance.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Esgotos , beta-Lactamases/genética
4.
J Glob Antimicrob Resist ; 27: 37-40, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371242

RESUMO

OBJECTIVES: The mobile tigecycline resistance gene tet(X4), conferring resistance to all tetracyclines, is largely reported from China, however the global spread of such a novel resistance mechanism is a concern for preserving the efficacy of these last-resort antibiotics. The aim of our study was to determine the genetic basis of resistance in a tigecycline-resistant Escherichia coli strain (2-326) isolated from sewage in Bergen, Norway, using whole-genome sequencing (WGS). METHODS: WGS was carried out using Illumina MiSeq-based sequencing. In vitro conjugation assays were performed to determine the potential of isolate 2-326 to transfer tigecycline resistance to other strains. RESULTS: Escherichia coli isolate 2-326 belongs to pathogenic sequence type 167 (ST167) and carries several clinically important antibiotic resistance genes including tet(X4), blaCTX-M-14, dfrA12, sul2, qnrS1 as well as several aminoglycoside resistance genes. Tigecycline resistance along with resistance to tetracycline, sulfamethoxazole, chloramphenicol and azithromycin was transferred to green fluorescent protein (GFP)-encoding E. coli strain CV601-GFP by conjugation. CONCLUSION: To the best of our knowledge, this is the first report of E. coli carrying mobile tet(X4) gene from Norway. Our study demonstrates the ongoing spread of new mechanisms of resistance against last-resort antibiotics and the need for surveillance of such resistance factors in the population in order to mitigate their spread.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/genética , Humanos , Tigeciclina/farmacologia , Águas Residuárias
5.
Microorganisms ; 8(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266320

RESUMO

Klebsiella spp. are a major cause of both nosocomial and community acquired infections, with K. pneumoniae being responsible for most human infections. Although Klebsiella spp. are present in a variety of environments, their distribution in the sea and the associated antibiotic resistance is largely unknown. In order to examine prevalence of K. pneumoniae and related species in the marine environment, we sampled 476 batches of marine bivalve molluscs collected along the Norwegian coast. From these samples, K. pneumoniae (n = 78), K. oxytoca (n = 41), K. variicola (n = 33), K. aerogenes (n = 1), Raoultella ornithinolytica (n = 38) and R. planticola (n = 13) were isolated. The number of positive samples increased with higher levels of faecal contamination. We found low prevalence of acquired resistance in all isolates, with seven K. pneumoniae isolates showing resistance to more than one antibiotic class. The complete genome sequence of cefotaxime-resistant K. pneumoniae sensu stricto isolate 2016-1400 was obtained using Oxford Nanopore and Illumina MiSeq based sequencing. The 2016-1400 genome had two contigs, one chromosome of 5,088,943 bp and one plasmid of 191,744 bp and belonged to ST1035. The ß-lactamase genes blaCTX-M-3 and blaTEM-1, as well as the heavy metal resistance genes pco, ars and sil were carried on a plasmid highly similar to one found in K. pneumoniae strain C17KP0055 from South-Korea recovered from a blood stream infection. The present study demonstrates that K. pneumoniae are prevalent in the coastal marine environment and that bivalve molluscs may act as a potential reservoir of extended spectrum ß-lactamase (ESBL)-producing K. pneumoniae that may be transmitted through the food chain.

6.
Curr Microbiol ; 74(9): 1043-1048, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28623453

RESUMO

This paper describes a cultivation method to increase the recovery of bacteria from the marine muscle-invading parasitic nematode larvae of Anisakis spp. These larvae hold a high and complex population of accumulated bacteria, originating from seawater, crustaceans, fish, and marine mammals, all involved in the lifecycle of Anisakis. Two in-house agars based on fish juice prepared by either mechanical or enzymatic degradation of the fish tissue, were made. The Anisakis larvae were homogenised prior to cultivation on the in-house fish juice agars and the bacterial numbers and diversity were compared to those obtained applying the commercially available Marine Agar and Iron Agar Lyngby. Bacterial colonies of unique appearance were subcultured and identified by 16S rRNA gene sequencing. Totally three of twenty identified taxa were found on the in-house fish juice agars only. Fish juice agar prepared enzymatically would be the best supplementary agar, as this agar gave significantly higher heterotrophic plate counts, compared to mechanical preparation. The enzymatically prepared fish juice gave more suitable agar quality, was more resource efficient, and had apparently increased nutrient density and availability.


Assuntos
Anisakis/microbiologia , Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Animais , Bactérias/classificação , Bactérias/genética , Carga Bacteriana , Biodiversidade , DNA Ribossômico/química , DNA Ribossômico/genética , Peixes/parasitologia , Larva/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Front Microbiol ; 8: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149295

RESUMO

The mechanisms for the development and spread of antibacterial resistance (ABR) in bacteria residing in environmental compartments, including the marine environment, are far from understood. The objective of this study was to examine the ABR rates in Escherichia coli and other Enterobacteriaceae isolates obtained from marine bivalve mollusks collected along the Norwegian coast during a period from October 2014 to November 2015. A total of 549 bivalve samples were examined by a five times three tube most probable number method for enumeration of E. coli in bivalves resulting in 199 isolates from the positive samples. These isolates were identified by biochemical reactions and matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry, showing that 90% were E. coli, while the remaining were species within the genera Klebsiella, Citrobacter, and Enterobacter. All 199 isolates recovered were susceptibility tested following the European Committee on Antimicrobial Susceptibility Testing disk diffusion method. In total, 75 of 199 (38%) isolates showed resistance to at least one antibacterial agent, while multidrug-resistance were seen in 9 (5%) isolates. One isolate conferred resistance toward 15 antibacterial agents. Among the 75 resistant isolates, resistance toward extended-spectrum penicillins (83%), aminoglycosides (16%), trimethoprim (13%), sulfonamides (11%), tetracyclines (8%), third-generation cephalosporins (7%), amphenicols (5%), nitrofurans (5%), and quinolones (5%), were observed. Whole-genome sequencing on a selection of 10 E. coli isolates identified the genes responsible for resistance, including blaCTX-M genes. To indicate the potential for horizontal gene transfer, conjugation experiments were performed on the same selected isolates. Conjugative transfer of resistance was observed for six of the 10 E. coli isolates. In order to compare E. coli isolates from bivalves with clinical strains, multiple-locus variable number tandem repeats analysis (MLVA) was applied on a selection of 30 resistant E. coli isolates. The MLVA-profiles were associated with community-acquired E. coli strains causing bacteremia. Our study indicates that bivalves represent an important tool for monitoring antibacterial resistant E. coli and other members of the Enterobacteriaceae family in the coastal environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...