Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 323, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328739

RESUMO

BACKGROUND: During domestication and subsequent improvement plants were subjected to intensive positive selection for desirable traits. Identification of selection targets is important with respect to the future targeted broadening of diversity in breeding programmes. Rye (Secale cereale L.) is a cereal that is closely related to wheat, and it is an important crop in Central, Eastern and Northern Europe. The aim of the study was (i) to identify diverse groups of rye accessions based on high-density, genome-wide analysis of genetic diversity within a set of 478 rye accessions, covering a full spectrum of diversity within the genus, from wild accessions to inbred lines used in hybrid breeding, and (ii) to identify selective sweeps in the established groups of cultivated rye germplasm and putative candidate genes targeted by selection. RESULTS: Population structure and genetic diversity analyses based on high-quality SNP (DArTseq) markers revealed the presence of three complexes in the Secale genus: S. sylvestre, S. strictum and S. cereale/vavilovii, a relatively narrow diversity of S. sylvestre, very high diversity of S. strictum, and signatures of strong positive selection in S. vavilovii. Within cultivated ryes we detected the presence of genetic clusters and the influence of improvement status on the clustering. Rye landraces represent a reservoir of variation for breeding, and especially a distinct group of landraces from Turkey should be of special interest as a source of untapped variation. Selective sweep detection in cultivated accessions identified 133 outlier positions within 13 sweep regions and 170 putative candidate genes related, among others, to response to various environmental stimuli (such as pathogens, drought, cold), plant fertility and reproduction (pollen sperm cell differentiation, pollen maturation, pollen tube growth), and plant growth and biomass production. CONCLUSIONS: Our study provides valuable information for efficient management of rye germplasm collections, which can help to ensure proper safeguarding of their genetic potential and provides numerous novel candidate genes targeted by selection in cultivated rye for further functional characterisation and allelic diversity studies.


Assuntos
Melhoramento Vegetal , Secale , Secale/genética , Sementes , Fenótipo , Citoplasma
2.
Front Plant Sci ; 13: 897697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646009

RESUMO

Powdery mildew is one of the most devastating diseases of wheat which significantly decreases yield and quality. Identification of new sources of resistance and their implementation in breeding programs is the most effective way of disease control. Two major powdery mildew resistance loci conferring resistance to all races in seedling and adult plant stages were identified in the emmer wheat landrace GZ1. Their positions, effects, and transferability were verified using two linkage maps (1,510 codominant SNP markers) constructed from two mapping populations (276 lines in total) based on the resistant GZ1 line. The dominant resistance locus QPm.GZ1-7A was located in a 90 cM interval of chromosome 7AL and explains up to 20% of the trait variation. The recessive locus QPm.GZ1-2A, which provides total resistance, explains up to 40% of the trait variation and was located in the distal part of chromosome 2AL. The locus was saturated with 14 PCR-based markers and delimited to a 0.99 cM region which corresponds to 4.3 Mb of the cv. Zavitan reference genome and comprises 55 predicted genes with no apparent candidate for the QPm.GZ1-2A resistance gene. No recessive resistance gene or allele was located at the locus before, suggesting the presence of a new powdery mildew resistance gene in the GZ1. The mapping data and markers could be used for the implementation of the locus in breeding. Moreover, they are an ideal base for cloning and study of host-pathogen interaction pathways determined by the resistance genes.

3.
J Mol Evol ; 84(2-3): 116-128, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28168328

RESUMO

The patterns of genetic diversity related to the taxonomy and domestication history of 85 accessions representing the main four species of the genus Hordeum were examined by retrotransposon-microsatellite amplified polymorphism (REMAP) markers based on the retrotransposon BARE-1. A substantial level of genetic polymorphisms at among- and within-species level was observed showing that this retrotransposon family and its adjacent genomic regions has been a target for genome dynamics during the evolution and domestication of barley. The obtained data are consistent with the current taxonomic status within the genus Hordeum. Similar level of genetic diversity was observed between the wild and the domesticated barley accessions suggesting that transposable elements` activity and accumulation may counteract the decrease of genome-wide diversity following domestication. In addition, eco-geographical sub-genome pools of the cultivated barley were identified in support to the theory of multiple origins of domestication within the genus Hordeum. We also provide conclusions about the relationship between accessions of different species and the putative routes of barley domestication. In conclusion, the retrotransposon BARE-1 stands as a reliable and perspective DNA marker for the assessment of the phylogenetic and domestication history in the genus Hordeum and other crop species.


Assuntos
Hordeum/genética , Proteínas de Plantas/genética , Análise de Sequência de DNA/métodos , Evolução Biológica , DNA de Plantas/genética , Evolução Molecular , Marcadores Genéticos/genética , Variação Genética/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo Genético/genética , Retroelementos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA