Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(3): 399-412, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277792

RESUMO

ConspectusThe unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment.Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling "silver bullet" will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and "combination therapies" where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa.The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.


Assuntos
Incrustação Biológica , Produtos Biológicos , Desinfetantes , Animais , Humanos , Química Farmacêutica , Organismos Aquáticos , Incrustação Biológica/prevenção & controle , Produtos Biológicos/farmacologia
2.
Macromol Biosci ; 24(4): e2300425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009664

RESUMO

Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for "click on demand" attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms.


Assuntos
Incrustação Biológica , Poliuretanos , Camundongos , Animais , Humanos , Poliuretanos/farmacologia , Poliuretanos/química , Peptídeos Antimicrobianos , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
3.
Biofouling ; 39(8): 775-784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822262

RESUMO

In the current study we investigate the antifouling potential of three polyphenolic resveratrol multimers (-)-hopeaphenol, vaticanol B and vatalbinoside A, isolated from two species of Anisoptera found in the Papua New Guinean rainforest. The compounds were evaluated against the growth and settlement of eight marine microfoulers and against the settlement and metamorphosis of Amphibalanus improvisus barnacle cyprids. The two isomeric compounds (-)-hopeaphenol and vaticanol B displayed a high inhibitory potential against the cyprid larvae metamorphosis at 2.8 and 1.1 µM. (-)-Hopeaphenol was also shown to be a strong inhibitor of both microalgal and bacterial adhesion at submicromolar concentrations with low toxicity. Resveratrol displayed a lower antifouling activity compared to the multimers and had higher off target toxicity against MCR-5 fibroblasts. This study illustrates the potential of natural products as a valuable source for the discovery of novel antifouling leads with low toxicity.


Assuntos
Biofilmes , Thoracica , Animais , Resveratrol/farmacologia , Fenóis
4.
ACS Appl Bio Mater ; 6(6): 2415-2425, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37272968

RESUMO

This study reports the development of a class of eco-friendly antifouling biocides based on a cyclic dipeptide scaffold, 2,5-diketopiperazine (2,5-DKP). The lead compound cyclo(N-Bip-l-Arg-N-Bip-l-Arg) (1) was synthesized in gram amounts and used to assess the compatibility with an ablation/hydration coating, efficacy against biofouling, and biodegradation. Leaching of 1 from the coating into seawater was assessed via a rotating drum method, revealing relatively stable and predictable leaching rates under dynamic shear stress conditions (36.1 ± 19.7 to 25.2 ± 9.1 ng-1 cm-2 day-1) but low or no leaching under static conditions. The coatings were further analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS), with 1 seen to localize at the surface of the coating in a surfactant-like fashion. When coatings were deployed in the ocean, detectable reductions in biofouling development were measured for up to 11 weeks. After this time, biofouling overwhelmed the performance of the coating, consistent with leaching kinetics. Biodegradation of 1 in seawater was assessed using theoretical oxygen demand and analytical quantification. Masking effects were observed at higher concentrations of 1 due to antimicrobial properties, but half-lives were calculated ranging from 13.4 to 16.2 days. The results can rationally inform future development toward commercial antifouling products.


Assuntos
Incrustação Biológica , Desinfetantes , Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Desinfetantes/química , Peptídeos , Cinética
5.
ACS Med Chem Lett ; 14(6): 802-809, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312845

RESUMO

Small synthetic mimics of cationic antimicrobial peptides represent a promising class of compounds with leads in clinical development for the treatment of persistent microbial infections. The activity and selectivity of these compounds rely on a balance between hydrophobic and cationic components, and here, we explore the activity of 19 linear cationic tripeptides against five different pathogenic bacteria and fungi, including clinical isolates. The compounds incorporated modified hydrophobic amino acids inspired by motifs often found in bioactive marine secondary metabolites in combination with different cationic residues to probe the possibility of generating active compounds with improved safety profiles. Several of the compounds displayed high activity (low µM concentrations), comparable with the positive controls AMC-109, amoxicillin, and amphotericin B. A higher activity was observed against the fungal strains, and a low in vitro off-target toxicity was observed against erythrocytes and HeLa cells, thereby illustrating effective means for tuning the activity and selectivity of short antimicrobial peptides.

6.
Org Biomol Chem ; 20(47): 9431-9446, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36408605

RESUMO

Marine biofouling is a problem that plagues all maritime industries at vast economic and environmental cost. Previous and current methods to prevent biofouling have employed the use of heavy metals and other toxic or highly persistent chemicals, and these methods are now coming under immense regulatory pressure. Recent studies have illustrated the potential of nature-inspired tetrasubstituted 2,5-diketopiperazines (2,5-DKPs) as eco-friendly marine biocides for biofouling control. These highly active symmetrically substituted 2,5-DKPs can be generated by combining structural motifs from cationic innate defence peptides and natural marine antifoulants. A balance between a threshold hydrophobic contribution and sufficient cationic charge has been established as key for bioactivity, and our current study further increases understanding of the antifouling mechanism by investigating the effect of both regio- and stereochemistry. Novel synthetic routes for the generation of unsymmetrical 2,5-DKPs were developed and a library of nine compounds was prepared. The compounds were screened against a series of four model macrofouling organisms (Ciona savignyi, Mytilus galloprovincialis, Spirobranchus cariniferus, and Undaria pinnatifida). Several of the evaluated compounds displayed inhibitory activity at sub-micromolar concentrations. The structural contributions to antifouling bioactivity were studied using NMR spectroscopy and molecular modelling, revealing a strong dependence on a stable amphiphilic solution structure regardless of substitution pattern.


Assuntos
Dicetopiperazinas , Dicetopiperazinas/farmacologia
7.
Mar Drugs ; 20(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36005535

RESUMO

Two new ircinianin-type sesterterpenoids, ircinianin lactone B and ircinianin lactone C (7 and 8), together with five known entities from the ircinianin compound family (1, 3-6) were isolated from the marine sponge Ircinia wistarii. Ircinianin lactones B and C (7 and 8) represent new ircinianin terpenoids with a modified oxidation pattern. Despite their labile nature, the structures could be established using a combination of spectroscopic data, including HRESIMS and 1D/2D NMR techniques, as well as computational chemistry and quantum-mechanical calculations. In a broad screening approach for biological activity, the class-defining compound ircinianin (1) showed moderate antiprotozoal activity against Plasmodium falciparum (IC50 25.4 µM) and Leishmania donovani (IC50 16.6 µM).


Assuntos
Poríferos , Sesterterpenos , Animais , Lactonas/química , Lactonas/farmacologia , Estrutura Molecular , Poríferos/química , Sesterterpenos/química , Sesterterpenos/farmacologia , Terpenos/farmacologia
8.
Org Biomol Chem ; 20(28): 5589-5601, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796650

RESUMO

The management of neurological disorders such as dementia associated with Alzheimer's or Parkinson's disease includes the use of cholinesterase inhibitors. These compounds can slow down the progression of these diseases and can also be used in the treatment of glaucoma and myasthenia gravis. The majority of the cholinesterase inhibitors used in the clinic are derived from natural products and our current paper describes the use of a small marine pharmacophore to develop potent and selective cholinesterase inhibitors. Fourteen small inhibitors were designed based on recent discoveries about the inhibitory potential of a range of related marine secondary metabolites. The compounds were evaluated, in kinetic enzymatic assays, for their ability to inhibit three different cholinesterase enzymes and it was shown that compounds with a high inhibitory activity towards electric eel and human recombinant acetylcholinesterase (IC50 between 20-70 µM) could be prepared. It was also shown that this compound class was particularly active against horse serum butyrylcholinesterase, with IC50 values between 0.8-16 µM, which is an order of magnitude more potent than the clinically used positive control neostigmine. The compounds were further tested for off-target toxicity against both human umbilical vein endothelial cells and bovine and human erythrocytes and were shown to display a low mammalian cellular toxicity. Overall, the study illustrates how the brominated dipeptide marine pharmacophore can be used as a versatile natural scaffold for the design of potent, and selective cholinesterase inhibitors.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Butirilcolinesterase/metabolismo , Bovinos , Inibidores da Colinesterase/química , Electrophorus , Células Endoteliais/metabolismo , Cavalos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
9.
Front Immunol ; 13: 915368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720375

RESUMO

The search for efficient antimicrobial therapies that can alleviate suffering caused by infections from resistant bacteria is more urgent than ever before. Infections caused by multi-resistant pathogens represent a significant and increasing burden to healthcare and society and researcher are investigating new classes of bioactive compounds to slow down this development. Antimicrobial peptides from the innate immune system represent one promising class that offers a potential solution to the antibiotic resistance problem due to their mode of action on the microbial membranes. However, challenges associated with pharmacokinetics, bioavailability and off-target toxicity are slowing down the advancement and use of innate defensive peptides. Improving the therapeutic properties of these peptides is a strategy for reducing the clinical limitations and synthetic mimics of antimicrobial peptides are emerging as a promising class of molecules for a variety of antimicrobial applications. These compounds can be made significantly shorter while maintaining, or even improving antimicrobial properties, and several downsized synthetic mimics are now in clinical development for a range of infectious diseases. A variety of strategies can be employed to prepare these small compounds and this review describes the different compounds developed to date by adhering to a minimum pharmacophore based on an amphiphilic balance between cationic charge and hydrophobicity. These compounds can be made as small as dipeptides, circumventing the need for large compounds with elaborate three-dimensional structures to generate simplified and potent antimicrobial mimics for a range of medical applications. This review highlight key and recent development in the field of small antimicrobial peptide mimics as a promising class of antimicrobials, illustrating just how small you can go.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Antimicrobianos , Bactérias
10.
ACS Med Chem Lett ; 13(4): 632-640, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450374

RESUMO

Antimicrobial drug resistance is a looming health crisis facing us in the modern era, and new drugs are urgently needed to combat this growing problem. Synthetic mimics of antimicrobial peptides have recently emerged as a promising class of compounds for the treatment of persistent microbial infections. In the current study, we investigate five cyclic N-alkylated amphiphilic 2,5-diketopiperazines against 15 different strains of bacteria and fungi, including drug-resistant clinical isolates. Several of the 2,5-diketopiperazines displayed activities similar or superior to antibiotics currently in clinical use, with activities coupled to both the cationic and hydrophobic substituents. All possible stereoisomers of the lead peptide were prepared, and the effects of stereochemistry and amphiphilicity were investigated via 1D and 2D NMR spectroscopy, solution dynamics, and membrane interaction modeling. Clear differences in solution structures and membrane interaction potentials explain the differences seen in the bioactivity and physicochemical properties of each stereoisomer.

11.
Biofouling ; 38(2): 147-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35184621

RESUMO

The correlation between inherent corrosion resistance and biofouling was investigated for five different metallic coatings. Steel panels thermally spray-coated with either aluminium, Monel, bronze or different aluminium alloys were tested in controlled salt mist conditions and electrochemical corrosion tests and subsequently employed at sea. The biofouling of the panels was monitored at different depths (5, 10 and 15 m) at periods ranging from 5 to 12 months. The main macrofouling organisms were quantified and analysed using permutational multivariate analysis. The results indicate a significant difference in fouling pressure between depths and the geographic sites used. No statistically significant link between high corrosion resistance and lower biofouling pressure was observed, indicating that the main marine macrofoulers settled equally well on corrosion resistant and corrosion prone metallic surfaces. This work sheds light on biofouling of thermally sprayed metallic substrata and it characterizes and compares biofouling assemblages from different biogeographical regions in Europe.


Assuntos
Incrustação Biológica , Alumínio , Biofilmes , Corrosão , Aço
12.
Sci Total Environ ; 812: 152487, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953845

RESUMO

Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.


Assuntos
Incrustação Biológica , Desinfetantes , Organismos Aquáticos , Incrustação Biológica/prevenção & controle , Dicetopiperazinas , Desinfetantes/toxicidade
13.
Antibiotics (Basel) ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943728

RESUMO

Medical devices with an effective anti-colonization surface are important tools for combatting healthcare-associated infections. Here, we investigated the anti-colonization efficacy of antimicrobial peptides covalently attached to a gold model surface. The gold surface was modified by a self-assembled polyethylene glycol monolayer with an acetylene terminus. The peptides were covalently connected to the surface through a copper-catalyzed [3 + 2] azide-acetylene coupling (CuAAC). The anti-colonization efficacy of the surfaces varied as a function of the antimicrobial activity of the peptides, and very effective surfaces could be prepared with a 6 log unit reduction in bacterial colonization.

14.
Mar Biotechnol (NY) ; 23(6): 904-916, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34727298

RESUMO

The sponge derived 2,5-diketopiperazine metabolite barettin is a potent antifouling compound effective against the settlement and metamorphosis of barnacles. Simplified derivatives of barettin have previously been shown to display similar inhibitory properties. The synthetic derivative benzo[g]dipodazine has been reported to display significantly improved antifouling properties in comparison with the native barettin with inhibitory activities as low a 0.034 µM reported against barnacle cyprid settlement. In the current study we report the antifouling activity of 29 synthetic analogs designed and inspired by the potent antifouling effect seen for benzo[g]dipodazine. The library contains mainly not only dipodazine derivatives but also disubstituted diketopiperazines and compounds incorporating alternative heterocyclic cores such as hydantoin, creatinine, and rhodanine. Several of the prepared compounds inhibit the settlement of Amphibalanus improvisus cyprids at low micromolar concentrations, in parity with the natural barettin. While several highly active compounds were prepared by incorporating the benzo[g]indole as hydrophobic substituent, the remarkable antifouling effect reported for benzo[g]dipodazine was not observed when evaluated in our study.


Assuntos
Incrustação Biológica , Thoracica , Animais , Larva , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Relação Estrutura-Atividade
15.
J Antibiot (Tokyo) ; 74(5): 337-345, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495549

RESUMO

Synthetic mimics of antimicrobial peptides (AMPs) is a promising class of molecules for a variety of antimicrobial applications. Several hurdles must be passed before effective systemic infection therapies with AMPs can be achieved, but the path to effective topical treatment of skin, nail, and soft tissue infections appears less challenging to navigate. Skin and soft tissue infection is closely coupled to the emergence of antibiotic resistance and represents a major burden to the healthcare system. The present study evaluates the promising synthetic cationic AMP mimic, AMC-109, for treatment of skin infections in vivo. The compound is evaluated both in impregnated cotton wound dressings and in a gel formulation against skin infections caused by Staphylococcus aureus and methicillin resistant S. aureus. Both the ability to prevent colonization and formation of an infection, as well as eradicate an ongoing infection in vivo with a high bacterial load, were evaluated. The present work demonstrates that AMC-109 displays a significantly higher antibacterial activity with up to a seven-log reduction in bacterial loads compared to current clinical standard therapy; Altargo cream (1% retapamulin) and Fucidin cream (2% fusidic acid) in the in vivo wound models. It is thus concluded that AMC-109 represents a promising entry in the development of new and effective remedies for various skin infections.


Assuntos
Proteínas Citotóxicas Formadoras de Poros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bandagens , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diterpenos/farmacologia , Desenho de Fármacos , Feminino , Ácido Fusídico/farmacologia , Géis , Camundongos , Camundongos Endogâmicos BALB C , Projetos Piloto , Proteínas Citotóxicas Formadoras de Poros/química , Cicatrização
16.
ACS Appl Bio Mater ; 4(4): 3360-3373, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014421

RESUMO

Creation of surfaces resistant to the formation of microbial biofilms via biomimicry has been heralded as a promising strategy to protect a range of different materials ranging from boat hulls to medical devices and surgical instruments. In our current study, we describe the successful transfer of a highly effective natural marine biofilm inhibitor to the 2D surface format. A series of cyclic peptides inspired by the natural equinatoxin II protein produced by Beadlet anemone (Actinia equine) have been evaluated for their ability to inhibit the formation of a mixed marine microbial consortium on polyamide reverse osmosis membranes. In solution, the peptides are shown to effectively inhibit settlement and biofilm formation in a nontoxic manner down to 1 nM concentrations. In addition, our study also illustrates how the peptides can be applied to disperse already established biofilms. Attachment of a hydrophobic palmitic acid tail generates a peptide suited for strong noncovalent surface interactions and allows the generation of stable noncovalent coatings. These adsorbed peptides remain attached to the surface at significant shear stress and also remain active, effectively preventing the biofilm formation over 24 h. Finally, the covalent attachment of the peptides to an acrylate surface was also evaluated and the prepared coatings display a remarkable ability to prevent surface colonization at surface loadings of 55 ng/cm2 over 48 h. The ability to retain the nontoxic antibiofilm activity, documented in solution, in the covalent 2D-format is unprecedented, and this natural peptide motif displays high potential in several material application areas.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Venenos de Cnidários/farmacologia , Peptídeos/farmacologia , Animais , Antibacterianos/química , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Venenos de Cnidários/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Peptídeos/química , Conformação Proteica , Anêmonas-do-Mar/química , Propriedades de Superfície
17.
J Nat Prod ; 83(11): 3413-3423, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33054188

RESUMO

Stationary and slow-moving marine organisms regularly employ a natural product chemical defense to prevent being colonized by marine micro- and macroorganisms. While these natural antifoulants can be structurally diverse, they often display highly conserved chemistries and physicochemical properties, suggesting a natural marine antifouling pharmacophore. In our current report, we investigate the marine natural product phidianidine A, which displays several chemical properties found in highly potent marine antifoulants. Phidianidine A and synthetic analogues were screened against the settlement and metamorphosis of Amphibalanus improvisus cyprids, and several of the compounds displayed inhibitory activities at low micromolar concentrations with IC50 values down to 0.7 µg/mL observed. The settlement study highlights that phidianidine A is a potent natural antifoulant and that the scaffold can be tuned to generate simpler and improved synthetic analogues. The bioactivity is closely linked to the size of the compound and to its basicity. The study also illustrates that active analogues can be prepared in the absence of the natural constrained 1,2,4-oxadiazole ring. A synthetic lead analogue of phidianidine A was incorporated in a coating and included in antifouling field trials, where it was shown that the coating induced potent inhibition of marine bacteria and microalgae settlement.


Assuntos
Ascomicetos/efeitos dos fármacos , Incrustação Biológica , Alcaloides Indólicos/farmacologia , Oxidiazóis/farmacologia , Água do Mar , Thoracica , Animais , Alcaloides Indólicos/química , Oxidiazóis/química
18.
Sci Rep ; 10(1): 13206, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764602

RESUMO

The use of non-standard toxicity models is a hurdle in the early development of antimicrobial peptides towards clinical applications. Herein we report an extensive in vitro and in vivo toxicity study of a library of 24 peptide-based antimicrobials with narrow spectrum activity towards veterinary pathogens. The haemolytic activity of the compounds was evaluated against four different species and the relative sensitivity against the compounds was highest for canine erythrocytes, intermediate for rat and human cells and lowest for bovine cells. Selected peptides were additionally evaluated against HeLa, HaCaT and HepG2 cells which showed increased stability towards the peptides. Therapeutic indexes of 50-500 suggest significant cellular selectivity in comparison to bacterial cells. Three peptides were administered to rats in intravenous acute dose toxicity studies up to 2-8 × MIC. None of the injected compounds induced any systemic toxic effects in vivo at the concentrations employed illustrating that the correlation between the different assays is not obvious. This work sheds light on the in vitro and in vivo toxicity of this class of promising compounds and provides insights into the relationship between the different toxicity models often employed in different manners to evaluate the toxicity of novel bioactive compounds in general.


Assuntos
Hemólise/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Ratos
19.
Nat Prod Rep ; 36(8): 1053-1092, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30924818

RESUMO

Covering: Published between 1974 up to 2018Inhibition of cholinesterases is a common approach for the management of several disease states. Most notably, cholinesterase inhibitors are used to alleviate the symptoms of neurological disorders like dementia and Alzheimer's disease and treat myasthenia gravis and glaucoma. Historically, most drugs of natural origin have been isolated from terrestrial sources and inhibitors of cholinesterases are no exception. However, the last 50 years have seen a rise in the quantity of marine natural products with close to 25 000 reported in the scientific literature. A number of marine natural products with potent cholinesterase inhibitory properties have also been reported; isolated from a variety of marine sources from algae to ascidians. Representing a diverse range of structural classes, these compounds provide inspirational leads that could aid the development of therapeutics. The current paper aims to, for the first time, comprehensively summarize the literature pertaining to cholinesterase inhibitors derived from marine sources, including the first papers published in 1974 up to 2018. The review does not report bioactive extracts, only isolated compounds, and a specific focus lies on compounds with reported dose-response data. In vivo and mechanistic data is included for compounds where this is reported. In total 185 marine cholinesterase inhibitors and selected analogs have been identified and reported and some of the compounds display inhibitory activities comparable or superior to cholinesterase inhibitors in clinical use.


Assuntos
Organismos Aquáticos/química , Inibidores da Colinesterase/farmacologia , Animais , Produtos Biológicos , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular
20.
Acc Chem Res ; 52(3): 749-759, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30829472

RESUMO

The alarming rate at which micro-organisms are developing resistance to conventional antibiotics represents one of the global challenges of our time. There is currently ample space in the antibacterial drug pipeline, and scientists are trying to find innovative and novel strategies to target the microbial enemies. Nature has remained a source of inspiration for most of the antibiotics developed and used, and the immune molecules produced by the innate defense systems, as a first line of defense, have been heralded as the next source of antibiotics. Most living organisms produce an arsenal of antimicrobial peptides (AMPs) to rapidly fend off intruding pathogens, and several different attempts have been made to transform this versatile group of compounds into the next generation of antibiotics. However, faced with the many hurdles of using peptides as drugs, the success of these defense molecules as therapeutics remains to be realized. AMPs derived from the proteolytic degradation of the innate defense protein lactoferrin have been shown to display several favorable antimicrobial properties. In an attempt to investigate the biological and pharmacological properties of these much shorter AMPs, the sequence dependence was investigated, and it was shown, through a series of truncation experiments, that these AMPs in fact can be prepared as tripeptides, with improved antimicrobial activity, via the incorporation of unnatural hydrophobic residues and terminal cappings. In this Account, we describe how this class of promising cationic tripeptides has been developed to specifically address the main challenges limiting the general use of AMPs. This has been made possible through the identification of the antibacterial pharmacophore and via the incorporation of a range of unnatural hydrophobic and cationic amino acids. Incorporation of these residues at selected positions has allowed us to extensively establish how these compounds interact with the major proteolytic enzymes trypsin and chymotrypsin and also the two major drug-binding plasma proteins serum albumin and α-1 glycoprotein. Several of the challenges associated with using AMPs relate to their size, susceptibility to rapid proteolytic degradation, and poor oral bioavailability. Our studies have addressed these issues in detail, and the results have allowed us to effectively design and prepare active and metabolically stable AMPs that have been evaluated in a range of functional settings. The optimized short AMPs display inhibitory activities against a plethora of micro-organisms at low micromolar concentrations, and they have been shown to target resistant strains of both bacteria and fungi alike with a very rapid mode of action. Our Account further describes how these compounds behave in in vivo experiments and highlights both the challenges and possibilities of the intriguing compounds. In several areas, they have been shown to exhibit comparable or superior activity to established antibacterial, antifungal, and antifouling commercial products. This illustrates their ability to effectively target and eradicate various microbes in a variety of settings ranging from the ocean to the clinic.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Antibacterianos/farmacocinética , Antifúngicos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Candida/efeitos dos fármacos , Humanos , Lactoferrina/farmacocinética , Camundongos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/farmacocinética , Staphylococcus aureus/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...