Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36256613

RESUMO

Pore-forming toxins are an important component of the venom of many animals. Actinoporins are potent cytolysins that were first detected in the venom of sea anemones; however, they are occasionally found in animals other than cnidarians and are expanded in a few predatory gastropods. Here, we report the presence of 27 unique actinoporin-like genes with monophyletic origin in Mytilus galloprovincialis, which we have termed mytiporins. These mytiporins exhibited a remarkable level of molecular diversity and gene presence-absence variation, which warranted further studies aimed at elucidating their functional role. We structurally and functionally characterized mytiporin-1 and found significant differences from the archetypal actinoporin fragaceatoxin C. Mytiporin-1 showed weaker permeabilization activity, no specificity towards sphingomyelin, and weak activity in model lipid systems with negatively charged lipids. In contrast to fragaceatoxin C, which forms octameric pores, functional mytiporin-1 pores on negatively charged lipid membranes were hexameric. Similar hexameric pores were observed for coluporin-26 from Cumia reticulata and a conoporin from Conus andremenezi. This indicates that also other molluscan actinoporin-like proteins differ from fragaceatoxin C. Although the functional role of mytiporins in the context of molluscan physiology remains to be elucidated, the lineage-specific gene family expansion event that characterizes mytiporins indicates that strong selective forces acted on their molecular diversification. Given the tissue distribution of mytiporins, this process may have broadened the taxonomic breadth of their biological targets, which would have important implications for digestive processes or mucosal immunity.


Assuntos
Venenos de Cnidários , Mytilus , Anêmonas-do-Mar , Animais , Mytilus/genética , Venenos de Cnidários/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Lipídeos
2.
J Biol Chem ; 298(10): 102455, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063994

RESUMO

Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information about their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity was enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.


Assuntos
Bryopsida , Porinas , Animais , Sequência de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Venenos de Cnidários/química , Citotoxinas , Porinas/genética , Porinas/metabolismo , Anêmonas-do-Mar/química
3.
J Membr Biol ; 251(3): 491-505, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476261

RESUMO

Archaeosomes are vesicles made of lipids from archaea. They possess many unique features in comparison to other lipid systems, with their high stability being the most prominent one, making them a promising system for biotechnological applications. Here, we report a preparation protocol of large unilamellar vesicles, giant unilamellar vesicles (GUVs), and nanodiscs from archaeal lipids with incorporated cholesterol. Incorporation of cholesterol led to additional increase in thermal stability of vesicles. Surface plasmon resonance, sedimentation assays, intrinsic tryptophan fluorescence measurements, calcein release experiments, and GUVs experiments showed that members of cholesterol-dependent cytolysins, listeriolysin O (LLO), and perfringolysin O (PFO), bind to cholesterol-rich archaeosomes and thereby retain their pore-forming activity. Interestingly, we observed specific binding of LLO, but not PFO, to archaeosomes even in the absence of cholesterol. This suggests a new capacity of LLO to bind to carbohydrate headgroups of archaeal lipids. Furthermore, we were able to express LLO inside GUVs by cell-free expression. GUVs made from archaeal lipids were highly stable, which could be beneficial for synthetic biology applications. In summary, our results describe novel model membrane systems for studying membrane interactions of proteins and their potential use in biotechnology.


Assuntos
Archaea/metabolismo , Colesterol/química , Citotoxinas/química , Lipossomas Unilamelares/química , Colesterol/metabolismo , Citotoxinas/metabolismo , Lipossomas Unilamelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...