Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 18(6): 962-74, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11371584

RESUMO

In eukaryotic cells, the majority of proteins are degraded via the ATP-dependent ubiquitin/26S proteasome pathway. The proteasome is the proteolytic component of the pathway. It is a very large complex with a mass of around 2.5 MDa, consisting of at least 62 proteins encoded by 31 genes. The eukaryotic proteasome has evolved from a simpler archaebacterial form, similar in structure but containing only three different peptides. One of these peptides is an ATPase belonging to the AAA (Triple-A) family of ATPASES: Gene duplication and diversification has resulted in six paralogous ATPases being present in the eukaryotic proteasome. While sequence analysis studies clearly show that the six eukaryotic proteasomal ATPases have evolved from the single archaebacterial proteasomal ATPase, the deep node structures of the phylogenetic constructions lack resolution. Incorporating physical data to provide support for alternative phylogenetic hypotheses, we have constructed a model of a possible evolutionary history of the proteasomal ATPASES:


Assuntos
Adenosina Trifosfatases/genética , Cisteína Endopeptidases/genética , Evolução Molecular , Complexos Multienzimáticos/genética , Adenosina Trifosfatases/metabolismo , Animais , Archaea/enzimologia , Archaea/genética , Cisteína Endopeptidases/metabolismo , Células Eucarióticas/enzimologia , Células Eucarióticas/metabolismo , Humanos , Modelos Genéticos , Complexos Multienzimáticos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Filogenia , Complexo de Endopeptidases do Proteassoma
2.
Curr Protoc Mol Biol ; Chapter 20: Unit 20.2, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-18265191

RESUMO

This unit describes the use of proteins fused to glutathione-S-transferase (GST fusion proteins) to affinity purify other proteins, a technique also known as GST pulldown purification. The describes a strategy in which a GST fusion protein is bound to agarose affinity beads and the complex is then used to assay the binding of a specific test protein that has been labeled with [35S]methionine by in vitro translation. However, this method can be adapted for use with other types of fusion proteins; for example, His6, biotin tags, or maltose-binding protein fusions (MBP), and these may offer particular advantages. A describes preparation of an E. coli extract that is added to the reaction mixture with purified test protein to reduce nonspecific binding.


Assuntos
Cromatografia de Afinidade/métodos , Glutationa Transferase/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Indicadores e Reagentes , Soluções
3.
J Neurobiol ; 33(7): 877-90, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9407011

RESUMO

We have isolated a cDNA clone from mouse, m56, that encodes a member of the Conserved ATPase-containing Domain (CAD) protein family. Sequence analysis revealed that m56 is identical to mouse mSug1/FZA-B and shares high homology with human Trip1, moth 18-56, and yeast Sug1. When examined, Sug1-like CAD proteins appear to function in the regulation of the 26S proteasome, as well as associate with members of the steroid/thyroid receptor superfamily and other transcriptional activators. m56 can complement the lethal phenotype of loss of SUG1 in yeast. We have examined the tissue distribution of m56 using Northern and Western blots, in addition to immunocytochemistry and in situ hybridization. While m56 was expressed in all tissues and cells examined, several classes of neurons, most notably in the hippocampus, olfactory bulb, and cerebellum, displayed elevated levels of m56 mRNA and protein. We also examined distribution of RNA polymerase II and 26S proteasome subunit 4 (S4) within the mouse brain by in situ hybridization. While all three genes had similar patterns of expression, there were significant differences among them. In moths, the expression of the Sug1 homolog 18-56 is dramatically up-regulated during programmed cell death. In addition, it has been previously demonstrated that the proteasome plays an essential role in the regulation of apoptosis in mammals. We examined the expression of m56 in mouse during natural and induced cell death in a variety of tissues and found no significant changes in expression. Taken together, the data presented here suggest that while m56 is a highly conserved gene that presumably plays essential but complex roles in basal and developmental processes, it may not represent a rate-limiting step in these processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Aspartato Carbamoiltransferase/genética , Encéfalo/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Proteínas de Transporte/genética , Sequência Conservada , Di-Hidro-Orotase/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Complexos Multienzimáticos/genética , Família Multigênica , Filogenia , Fatores de Transcrição , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Animais , Cisteína Endopeptidases/química , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexo de Endopeptidases do Proteassoma , RNA Polimerase II/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
4.
J Mol Evol ; 45(5): 549-63, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9342402

RESUMO

The AAA proteins (ATPases Associated with a variety of cellular Activities) are found in eubacterial, archaebacterial, and eukaryotic species and participate in a large number of cellular processes, including protein degradation, vesicle fusion, cell cycle control, and cellular secretory processes. The AAA proteins are characterized by the presence of a 230 to 250-amino acid ATPase domain referred to as the Conserved ATPase Domain or CAD. Phylogenetic analysis of 133 CAD sequences from 38 species reveal that AAA CADs are organized into discrete groups that are related not only in structure but in cellular function. Evolutionary analyses also indicate that the CAD was present in the last common ancestor of eubacteria, archaebacteria, and eukaryotes. The eubacterial CADs are found in metalloproteases, while CAD-containing proteins in the archaebacterial and eukaryotic lineages appear to have diversified by a series of gene duplication events that lead to the establishment of different functional AAA proteins, including proteasomal regulatory, NSF/Sec, and Pas proteins. The phylogeny of the CADs provides the basis for establishing the patterns of evolutionary change that characterize the AAA proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Evolução Molecular , Filogenia , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/fisiologia , Archaea/genética , Bactérias/genética , Cisteína Endopeptidases/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/fisiologia , Células Eucarióticas/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Metaloendopeptidases/metabolismo , Metaloendopeptidases/fisiologia , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma
5.
Gene ; 181(1-2): 63-9, 1996 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-8973309

RESUMO

We have identified a novel protein, CADp44, based on the analysis of cDNAs derived from the brainstem of the 13-lined ground squirrel, Spermophilus tridecemlineatus. CADp44 has an unmodified molecular mass of 44,178 Da and contains multiple functional domains, including a conserved ATPase domain (CAD) and a leucine zipper motif. We show that distinct regions of the CADp44 sequence are identical to a set of peptides prepared from a recently identified bovine protein, referred to as p42, which is found in the PA700 regulatory complex of the 26S proteasome (DeMartino et al., 1996). We also show that CADp44 is the functional homolog of the newly characterized Sug2 protein from the budding yeast, Saccharomyces cerevisiae (Russell et al., 1996). Consistent with its role as a component of the 26S proteasome, CADp44 mRNA is found in all ground squirrel tissues examined. Evolutionary relationships based on sequence analysis show that both CADp44 and yeast Sug2p are distinct from the other five CAD ATPases found in the PA700, and together comprise the sixth and newest CAD subunit of the regulatory complex of the 26S proteasome.


Assuntos
Adenosina Trifosfatases/análise , Peptídeo Hidrolases/química , Complexo de Endopeptidases do Proteassoma , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Evolução Molecular , Proteínas Fúngicas/química , Expressão Gênica , Dados de Sequência Molecular , Saccharomyces cerevisiae , Sciuridae , Homologia de Sequência de Aminoácidos
6.
Nature ; 374(6517): 88-91, 1995 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-7870180

RESUMO

Biochemical and genetic studies suggest the existence of mediators that work between the activation domains (ADs) of regulatory proteins and the basic transcriptional machinery. We have previously shown genetically that Sug1 interacts with the AD of the yeast activator Ga14. Here we provide evidence that the Sug1 protein of yeast binds directly to the ADs of Ga14 and the viral activator, VP16. Sug1 protein is associated with the TATA-binding protein in vivo and binds to it in vitro, consistent with a mediator function. We also demonstrate that Sug1 is not a component of the 26S proteasome, contrary to previous reports. Sug1 is a member of a large, highly conserved family of ATPases, implying a role for ATP hydrolysis in the activation of transcription.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cisteína Endopeptidases/metabolismo , Escherichia coli , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae , Proteína de Ligação a TATA-Box , Transcrição Gênica
7.
Nature ; 374(6517): 91-4, 1995 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-7870181

RESUMO

The thyroid-hormone receptors are hormone-dependent transcription factors that control expression of many target genes. This regulation is presumably a consequence of hormone-dependent contacts between the receptors and the basal transcription machinery. We used the yeast two-hybrid system to identify a candidate human transcriptional mediator that interacts with both the thyroid-hormone receptor and the retinoid-X receptor in a ligand-dependent fashion. This protein, Trip1 (for thyroid-hormone-receptor interacting protein), shares striking sequence conservation with the yeast transcriptional mediator Sug1 (refs 6, 7). Here we show that Trip1 can functionally substitute for Sug1 in yeast, and that both proteins interact in vitro with the thyroid-hormone receptor, and with the transcriptional activation domains of yeast GAL4 and of herpes virus VP16.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Receptores dos Hormônios Tireóideos/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases , Sequência de Aminoácidos , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa Transferase/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Proteínas com Domínio LIM , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Receptores do Ácido Retinoico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Receptores X de Retinoides , Saccharomyces cerevisiae , Transcrição Gênica
8.
J Biol Chem ; 269(33): 20878-84, 1994 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-8063704

RESUMO

PA700 is a 700,000-dalton multisubunit protein that activates multiple proteolytic activities of the 20 S proteasome by a mechanism dependent upon ATP hydrolysis (Ma, C.-P., Vu, J.H., Proske, R.J., Slaughter, C.A., and DeMartino, G.N. (1994) J. Biol. Chem. 269, 3539-3547). In order to determine the identities of and structural relationships among the subunits of PA700, individual PA700 subunits were isolated by a combination of reverse phase high performance liquid chromatography (HPLC) and SDS-polyacrylamide gel electrophoresis. Seven of the 16 subunits of PA700 so isolated were subjected to solid phase protease digestion followed by reverse phase HPLC. Selected peptides from each protein were sequenced by automated Edman degradation. Comparison of the resulting amino acid sequences with those in current data bases indicated that three of the subunits represented novel proteins, whereas four subunits were homologous to previously describe proteins. Three subunits of the latter group were, in turn, homologous to one another and are members of a large family of proteins containing a consensus sequence for ATP binding. Purified PA700 demonstrated ATPase activity. Treatment of PA700 with alkylating agents, such as N-ethylmaleimide, inhibited with similar kinetics both proteasome activation and ATPase activity, suggesting that these two activities are functionally linked. Thus, PA700 is composed of multiple members of a protein family that may function in the ATP-dependent regulation of proteasome activity.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Cisteína Endopeptidases/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotídeos/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma , Proteínas/química , Homologia de Sequência de Aminoácidos
10.
J Mol Biol ; 228(1): 7-12, 1992 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-1447795

RESUMO

Previous studies have proposed that specific translational pauses have evolved to promote protein folding inside the cell by temporally separating the folding of specific regions of some polypeptide chains during their synthesis. Here we show that this is the case for a bifunctional protein in Saccharomyces cerevisiae. The yeast TRP3 gene contains a translational pause comprising ten contiguous non-preferred codons within its second functional domain (indoleglycerol phosphate synthase). Site-directed mutagenesis was used to remove this translational pause by increasing the codon bias of the region without changing the amino acid sequence of the protein (to create the gene TRP3pr: pause replaced). The TRP3pr gene was able to complement a trp3:: URA3 null mutation in yeast. No significant differences in the doubling times of TRP3 or TRP3pr yeast transformants were observed during growth at 25 degrees C, 30 degrees C or 37 degrees C, or in the presence of sublethal concentrations of the analogue, 5-methyltryptophan. However, further analysis of TRP3 and TRP3pr transformants revealed that the removal of the translational pause causes a 1.5-fold decrease in indoleglycerol phosphate synthase activity per TRP3 mRNA. This observation which is statistically significant (P < 0.05) and reproducible, suggests that translational pausing promotes the correct intracellular folding of the TRP3 protein.


Assuntos
Elongação Traducional da Cadeia Peptídica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Triptofano/biossíntese , Sequência de Aminoácidos , Antranilato Sintase/genética , Sequência de Bases , Southern Blotting , DNA Fúngico , Teste de Complementação Genética , Glicerofosfatos/biossíntese , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Biossíntese de Proteínas , Saccharomyces cerevisiae/enzimologia , Transformação Genética
11.
Nature ; 357(6380): 698-700, 1992 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-1614516

RESUMO

The acidic transcriptional activation motif functions in all eukaryotes, which suggests that it makes contact with some universal component of the transcriptional apparatus. Transcriptional activation by the yeast regulatory protein GAL4 requires an acidic region at its carboxyl terminus. Here we implement a selection scheme to determine whether GAL4 can still function when this C-terminal domain has been deleted. It can, when accompanied by a mutation in the SUG1 gene which is an essential gene in yeast. Analysis of mutant SUG1 in combination with various alleles of GAL4 indicates that SUG1 acts through a transcriptional pathway that depends on GAL4, but requires a region of GAL4 other than the C-terminal acidic activation domain. The predicted amino-acid sequence of SUG1 closely resembles that of two human proteins, TBP1 and MSS1, which modulate expression mediated by the human immunodeficiency virus tat gene.


Assuntos
Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Adenosina Trifosfatases , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação a DNA , Proteínas Fúngicas/genética , Genes tat , HIV/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência do Ácido Nucleico , Supressão Genética
12.
SAAS Bull Biochem Biotechnol ; 4: 17-9, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1367248

RESUMO

The current generally accepted model of eukaryotic gene regulation is essentially a simple one. Regulatory proteins containing separable DNA binding and transcriptional activation domains, bind to specific DNA sequences in promotors and interact directly or indirectly with the TATA Box binding factor to increase the rate of transcription initiation at selected promotors. Here we present observations suggesting that the process may be more complex.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Adenosina Trifosfatases , Sítios de Ligação , DNA/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma , Sequências Reguladoras de Ácido Nucleico , Relação Estrutura-Atividade , Transcrição Gênica , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA