Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457072

RESUMO

Herein, in this report we are introducing newly synthesized chalcone derivative, "(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one" (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M-1 with the help of the Stern-Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10-5 M and 14.54 × 10-5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.

2.
Biomedicines ; 11(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371757

RESUMO

Nuclear factor kappa beta (NF-κB) is a transcriptional factor that plays a crucial role in regulating cancer cell proliferation. Therefore, the inhibition of NF-κB activity by small molecules may be beneficial in cancer therapy. In this report, methyl-thiol-bridged oxadiazole and triazole heterocycles were synthesized via click chemistry and it was observed that the lead structure, 2-(((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-5-(4-methoxybenzyl)-1,3,4-oxadiazole (4c), reduced the viability of MCF-7 cells with an IC50 value of 7.4 µM. Compound 4c also caused concentration-dependent loss of cell viability in chronic myelogenous leukemia (CML) cells. Furthermore, compound 4c inhibited the activation of NF-κB in human CML cells as observed by nuclear translocation and DNA binding assays. Functionally, compound 4c produced PARP cleavage and also suppressed expression of Bcl-2/xl, MMP-9, COX-2, survivin, as well as VEGF, resulting in apoptosis of CML cells. Moreover, ChIP assay showed that compound 4c decreased the binding of COX-2 to the p65 gene promoter. Detailed in silico analysis also indicated that compound 4c targeted NF-κB in CML cells. In conclusion, a novel structure bearing both triazole and oxadiazole moieties has been identified that can target NF-κB in CML cells and may constitute a potential novel drug candidate.

3.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110684

RESUMO

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer exhibits early relapses, poor prognoses, and high recurrence rates. Herein, a JNK-targeting compound has been developed that may be of utility in HER2-positive mammary carcinoma. The design of a pyrimidine-and coumarin-linked structure targeting JNK was explored and the lead structure PC-12 [4-(3-((2-((4-chlorobenzyl)thio) pyrimidin-4-yl)oxy)propoxy)-6-fluoro-2H-chromen-2-one (5d)] was observed to selectively inhibit the proliferation of HER2-positive BC cells. The compound PC-12 exerted DNA damage and induced apoptosis in HER-2 positive BC cells more significantly compared to HER-2 negative BC cells. PC-12 induced PARP cleavage and down-regulated the expression of IAP-1, BCL-2, SURVIVIN, and CYCLIN D1 in BC cells. In silico and theoretical calculations showed that PC-12 could interact with JNK, and in vitro studies demonstrated that it enhanced JNK phosphorylation through ROS generation. Overall, these findings will assist the discovery of new compounds targeting JNK for use in HER2-positive BC cells.


Assuntos
Apoptose , Neoplasias da Mama , Humanos , Feminino , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Cumarínicos/farmacologia , Pirimidinas , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral
4.
Bioengineering (Basel) ; 10(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829653

RESUMO

In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone and N-substituted-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides. Compound 3f with 2,3-dichlorophenyl substitution was recognized among the tested series as a lead structure that inhibited the viability of MCF-7 cells with an IC50 value of 9.2 µM. A dose- and time-dependent inhibition of STAT3 phosphorylation at Tyr705 and Ser727 was observed in MCF-7 and T47D cells when compound 3f was added in vitro. Calculations using density functional theory showed that the title compounds HOMOs and LUMOs are situated on imidazopyridine-pyrazoline and nitrophenyl rings, respectively. Hence, compound 3f effectively inhibited STAT3 phosphorylation in MCF-7 and T47D cells, indicating that these structures may be an alternative synthon to target STAT3 signaling in BC.

5.
Biomedicines ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672680

RESUMO

Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a protein that acts as a substrate. Herein, the identification of pyranopyrazoles that were CDK inhibitors was attempted, whose synthesis was catalyzed by nano-zirconium dioxide via multicomponent reaction. Additionally, we performed an in-situ analysis of the intermediates of multicomponent reactions, for the first-time, which revealed that nano-zirconium dioxide stimulated the reaction, as estimated by Gibbs free energy calculations of spontaneity. Functionally, the novel pyranopyrazoles were tested for a loss of cell viability using human breast cancer cells (MCF-7). It was observed that compounds 5b and 5f effectively produced loss of viability of MCF-7 cells with IC50 values of 17.83 and 23.79 µM, respectively. In vitro and in silico mode-of-action studies showed that pyranopyrazoles target CDK1 in human breast cancer cells, with lead compounds 5b and 5f having potent IC50 values of 960 nM and 7.16 µM, respectively. Hence, the newly synthesized bioactive pyranopyrazoles could serve as better structures to develop CDK1 inhibitors against human breast cancer cells.

6.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566199

RESUMO

A number of uracil amides cleave poly (ADP-ribose) polymerase and therefore novel thiouracil amide compounds were synthesized and screened for the loss of cell viability in a human-estrogen-receptor-positive breast cancer cell line. The synthesized compounds exhibited moderate to significant efficacy against human breast cancer cells, where the compound 5e IC50 value was found to be 18 µM. Thouracil amide compounds 5a and 5e inhibited the catalytical activity of PARP1, enhanced cleavage of PARP1, enhanced phosphorylation of H2AX, and increased CASPASE 3/7 activity. Finally, in silico analysis demonstrated that compound 5e interacted with PARP1. Hence, specific thiouracil amides may serve as new drug-seeds for the development of PARP inhibitors for use in oncology.


Assuntos
Neoplasias da Mama , Poli(ADP-Ribose) Polimerases , Difosfato de Adenosina , Amidas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Piperazina , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ribose , Tiouracila
7.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681659

RESUMO

The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.


Assuntos
Nitrobenzenos/química , Proteína de Morte Celular Associada a bcl/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Teoria da Densidade Funcional , Feminino , Humanos , Células MCF-7 , Conformação Molecular , Nitrobenzenos/farmacologia , Fosforilação/efeitos dos fármacos , Serina/metabolismo
8.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 11): 1620-1626, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709079

RESUMO

The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol-ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra-molecular C-H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol-ecules into inversion-related dimers. The dimers are linked in turn by weak C-H⋯π and slipped π-π stacking inter-actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter-molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter-actions. Energy framework calculations suggest that the contacts formed between mol-ecules are largely dispersive in nature. Analysis of HOMO-LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO-LUMO gap was found to be 4.343 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...