Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36929840

RESUMO

Alzheimer's disease (AD) is an age-related disorder that results in progressive cognitive impairment and memory loss. Deposition of amyloid ß (Aß) peptides in senile plaques is a hallmark of AD. γ-secretase produces Aß peptides, mostly as the soluble Aß40 with fewer insoluble Aß42 peptides. Rare, early-onset AD (EOAD) occurs in individuals under 60 years of age. Most EOAD cases are due to unknown genetic causes, but a subset is due to mutations in the genes encoding the amyloid precursor protein that is processed into Aß peptides or the presenilins (PS1 and PS2) that process APP. PS1 interacts with the epsilon isoform of glial fibrillary acidic protein (GFAPɛ), a protein found in the subventricular zone of the brain. We have found that GFAPɛ interacts with the telomere protection factor RAP1 (TERF2IP). RAP1 can also interact with PS1 alone or with GFAPɛ in vitro. Our data show that the nuclear protein RAP1 has an extratelomeric role in the cytoplasm through its interactions with GFAPɛ and PS1. GFAPɛ coprecipitated with RAP1 from human cell extracts. RAP1, GFAPɛ, and PS1 all colocalized in human SH-SY5Y cells. Using a genetic model of the γ-secretase complex in Saccharomyces cerevisiae, RAP1 increased γ-secretase activity, and this was potentiated by GFAPɛ. Our studies are the first to connect RAP1 with an age-related disorder.


Assuntos
Doença de Alzheimer , Neuroblastoma , Proteínas de Saccharomyces cerevisiae , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteína Glial Fibrilar Ácida/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
2.
G3 (Bethesda) ; 7(4): 1061-1084, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28209762

RESUMO

The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.


Assuntos
Aminoácidos/deficiência , Genes Fúngicos , Haploinsuficiência/genética , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Bioensaio , Loci Gênicos , Testes Genéticos , Heterozigoto , Perda de Heterozigosidade , Anotação de Sequência Molecular , Mutação/genética , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biomed Rep ; 5(2): 181-187, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27446538

RESUMO

Telomeres are important for maintaining the integrity of the genome through the action of the shelterin complex. Previous studies indicted that the length of the telomere did not have an effect on the amount of the shelterin subunits; however, those experiments were performed using immortalized cells with stable telomere lengths. The interest of the present study was to observe how decreasing telomere lengths over successive generations would affect the shelterin subunits. As neonatal human dermal fibroblasts aged and their telomeres became shorter, the levels of the telomere-binding protein telomeric repeat factor 2 (TRF2) decreased significantly. By contrast, the levels of one of its binding partners, repressor/activator protein 1 (RAP1), decreased to a lesser extent than would be expected from the decrease in TRF2. Other subunits, TERF1-interacting nuclear factor 2 and protection of telomeres protein 1, remained stable. The decrease in RAP1 in the older cells occurred in the nuclear and cytoplasmic fractions. Hydrogen peroxide (H2O2) stress was used as an artificial means of aging in the cells, and this resulted in RAP1 levels decreasing, but the effect was only observed in the nuclear portion. Similar results were obtained using U251 glioblastoma cells treated with H2O2 or grown in serum-depleted medium. The present findings indicate that TRF2 and RAP1 levels decrease as fibroblasts naturally age. RAP1 remains more stable compared to TRF2. RAP1 also responds to oxidative stress, but the response is different to that observed in aging.

4.
Biochem J ; 466(3): 547-59, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25437641

RESUMO

In eukaryotes, amino acid deprivation leads to the accumulation of uncharged tRNAs that are detected by Gcn2 (general control non-derepressible 2), which in turn phosphorylates eIF2α (α-subunit of eukaryotic translation initiation factor 2), an essential process for overcoming starvation. In Saccharomyces cerevisiae, sensing amino acid shortages requires that Gcn2 binds directly to its effector protein Gcn1 and both must associate with the ribosome. Our hypothesis is that uncharged tRNAs occur in the ribosomal A-site and that Gcn1 is directly involved in transfer of this starvation signal to Gcn2. In the present paper, we provide evidence that Gcn1 directly contacts the small ribosomal protein S10 (Rps10). Gcn1 residues 1060-1777 showed a yeast two-hybrid (Y2H) interaction with Rps10A. In vitro, Rps10A or Rps10B co-precipitated Gcn1[1060-1777] in an RNA-independent manner. rps10AΔ or rps10BΔ strains showed reduced eIF2α phosphorylation under replete conditions and shortly after onset of starvation, suggesting that Gcn1-mediated Gcn2 activation was impaired. Overexpression of GST-tagged Rps10 reduced growth under amino acid starvation and this was exacerbated by the Gcn1-M7A mutation known to impair Gcn1-ribosome interaction and Gcn2 activity. Under amino acid starvation, eEF3 (eukaryotic translation elongation factor 3) overexpression, known to weaken Gcn1 function on the ribosome, exacerbated the growth defect of rps10AΔ or rps10BΔ strains. Taken together, these data support the idea that Gcn1 contacts ribosome-bound Rps10 to efficiently mediate Gcn2 activation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Arabidopsis/genética , Ativação Enzimática/fisiologia , Técnicas de Silenciamento de Genes , Fatores de Alongamento de Peptídeos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética
5.
Mol Cell Biol ; 28(22): 6796-818, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18794364

RESUMO

The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Deleção de Genes , Complexo de Golgi/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Fusão de Membrana/fisiologia , Modelos Biológicos , Fenótipo , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Mol Cell Biol ; 25(24): 11171-83, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16314536

RESUMO

The Cyc8p/Tup1p complex mediates repression of diverse genes in Saccharomyces cerevisiae and is recruited by DNA binding proteins specific for the different sets of repressed genes. By screening the yeast deletion library, we identified Cyc8p as a coactivator for Gcn4p, a transcriptional activator of amino acid biosynthetic genes. Deletion of CYC8 confers sensitivity to an inhibitor of isoleucine/valine biosynthesis and impairs activation of Gcn4p-dependent reporters and authentic amino acid biosynthetic target genes. Deletion of TUP1 produces similar but less severe activation defects in vivo. Although expression of Gcn4p is unaffected by deletion of CYC8, chromatin immunoprecipitation assays reveal a strong defect in binding of Gcn4p at the target genes ARG1 and ARG4 in cyc8Delta cells and to a lesser extent in tup1Delta cells. The defects in Gcn4p binding and transcriptional activation in cyc8Delta cells cannot be overcome by Gcn4p overexpression but are partially suppressed in tup1Delta cells. The impairment of Gcn4p binding in cyc8Delta and tup1Delta cells is severe enough to reduce recruitment of SAGA, Srb mediator, TATA binding protein, and RNA polymerase II to the ARG1 and ARG4 promoters, accounting for impaired transcriptional activation of these genes in both mutants. Cyc8p and Tup1p are recruited to the ARG1 and ARG4 promoters, consistent with a direct role for this complex in stimulating Gcn4p occupancy of the upstream activation sequence (UAS). Interestingly, Gcn4p also stimulates binding of Cyc8p/Tup1p at the 3' ends of these genes, raising the possibility that Cyc8p/Tup1p influences transcription elongation. Our findings reveal a novel coactivator function for Cyc8p/Tup1p at the level of activator binding and suggest that Gcn4p may enhance its own binding to the UAS by recruiting Cyc8p/Tup1p.


Assuntos
Argininossuccinato Sintase/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Argininossuccinato Liase , Fatores de Transcrição de Zíper de Leucina Básica , Imunoprecipitação da Cromatina , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA/genética , Resistência a Medicamentos/genética , Deleção de Genes , Genes Fúngicos/genética , Isoleucina/biossíntese , Isoleucina/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Valina/biossíntese , Valina/genética
7.
Mol Cell Biol ; 25(9): 3461-74, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15831453

RESUMO

Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Transativadores/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Acetiltransferases/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Histona Acetiltransferases , Regiões Promotoras Genéticas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética
8.
Mol Cell Biol ; 24(15): 6871-86, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15254252

RESUMO

The Srb mediator is an important transcriptional coactivator for Gcn4p in the yeast Saccharomyces cerevisiae. We show that three subunits of the Gal11/tail domain of mediator, Gal11p, Pgd1p, and Med2p, and the head domain subunit Srb2p make overlapping contributions to the interaction of mediator with recombinant Gcn4p in vitro. Each of these proteins, along with the tail subunit Sin4p, also contributes to the recruitment of mediator by Gcn4p to target promoters in vivo. We found that Gal11p, Med2p, and Pgd1p reside in a stable subcomplex in sin4Delta cells that interacts with Gcn4p in vitro and that is recruited independently of the rest of mediator by Gcn4p in vivo. Thus, the Gal11p/Med2p/Pgd1p triad is both necessary for recruitment of intact mediator and appears to be sufficient for recruitment by Gcn4p as a free subcomplex. The med2Delta mutation impairs the recruitment of TATA binding protein (TBP) and RNA polymerase II to the promoter and the induction of transcription at ARG1, demonstrating the importance of the tail domain for activation by Gcn4p in vivo. Even though the Gal11p/Med2p/Pgd1p triad is the only portion of Srb mediator recruited efficiently to the promoter in the sin4Delta strain, this mutant shows high-level TBP recruitment and wild-type transcriptional induction at ARG1. Hence, the Gal11p/Med2p/Pgd1p triad may contribute to TBP recruitment independently of the rest of mediator.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transativadores/química , Fatores de Transcrição/química , Northern Blotting , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Escherichia coli/metabolismo , Genótipo , Glutationa Transferase/metabolismo , Complexo Mediador , Modelos Genéticos , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Quinases/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Transativadores/metabolismo , Transcrição Gênica
9.
J Biochem ; 135(6): 695-700, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15213244

RESUMO

Histone deacetylases are required for transcriptional repression in eukaryotes. Saccharomyces cerevisiae has several histone deacetylases, of which ySir2p is the most conserved throughout evolution. Currently, there is no report on the interacting protein partner of a human Sir2 homolog, SIRT2. Here we show for the first time that SIRT2 interacts with the homeobox transcription factor, HOXA10, which was identified in a two-hybrid screen. Interactions were confirmed by co-immunoprecipitation from in vitro translations as well as in human cell-free extracts. Taken together with mouse knockout studies, our results raise the intriguing possibility that SIRT2 plays a role in mammalian development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Sirtuínas/metabolismo , Animais , Linhagem Celular , Sistema Livre de Células , Proteínas de Ligação a DNA/genética , Proteínas Homeobox A10 , Proteínas de Homeodomínio , Humanos , Camundongos , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sirtuína 2 , Sirtuínas/genética , Técnicas do Sistema de Duplo-Híbrido
10.
Mol Cell Biol ; 24(10): 4104-17, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121833

RESUMO

Wild-type transcriptional activation by Gcn4p is dependent on multiple coactivators, including SAGA, SWI/SNF, Srb mediator, CCR4-NOT, and RSC, which are all recruited by Gcn4p to its target promoters in vivo. It was not known whether these coactivators are required for assembly of the preinitiation complex (PIC) or for subsequent steps in the initiation or elongation phase of transcription. We find that mutations in subunits of these coactivators reduce the recruitment of TATA binding protein (TBP) and RNA polymerase II (Pol II) by Gcn4p at ARG1, ARG4, and SNZ1, implicating all five coactivators in PIC assembly at Gcn4p target genes. Recruitment of Pol II at SNZ1 and ARG1 was eliminated by mutations in TBP or by deletion of the TATA box, indicating that TBP binding is a prerequisite for Pol II recruitment by Gcn4p. However, several mutations in SAGA subunits and deletion of SRB10 had a greater impact on promoter occupancy of Pol II versus TBP, suggesting that SAGA and Srb mediator can promote Pol II binding independently of their stimulatory effects on TBP recruitment. Our results reveal an unexpected complexity in the cofactor requirements for the enhancement of PIC assembly by a single activator protein.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Sequência de Bases , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA Polimerase II/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Proteína de Ligação a TATA-Box/genética , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
11.
J Biol Chem ; 279(29): 29952-62, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15126500

RESUMO

The general amino acid control (GAAC) enables yeast cells to overcome amino acid deprivation by activation of the alpha subunit of translation initiation factor 2 (eIF2alpha) kinase GCN2 and consequent induction of GCN4, a transcriptional activator of amino acid biosynthetic genes. Binding of GCN2 to GCN1 is required for stimulation of GCN2 kinase activity by uncharged tRNA in starved cells. Here we show that YIH1, when overexpressed, dampens the GAAC response (Gcn- phenotype) by suppressing eIF2alpha phosphorylation by GCN2. The overexpressed YIH1 binds GCN1 and reduces GCN1-GCN2 complex formation, and, consistent with this, the Gcn- phenotype produced by YIH1 overexpression is suppressed by GCN2 overexpression. YIH1 interacts with the same GCN1 fragment that binds GCN2, and this YIH1-GCN1 interaction requires Arg-2259 in GCN1 in vitro and in full-length GCN1 in vivo, as found for GCN2-GCN1 interaction. However, deletion of YIH1 does not increase eIF2alpha phosphorylation or derepress the GAAC, suggesting that YIH1 at native levels is not a general inhibitor of GCN2 activity. We discovered that YIH1 normally resides in a complex with monomeric actin, rather than GCN1, and that a genetic reduction in actin levels decreases the GAAC response. This Gcn- phenotype was partially suppressed by deletion of YIH1, consistent with YIH1-mediated inhibition of GCN2 in actin-deficient cells. We suggest that YIH1 resides in a YIH1-actin complex and may be released for inhibition of GCN2 and stimulation of protein synthesis under specialized conditions or in a restricted cellular compartment in which YIH1 is displaced from monomeric actin.


Assuntos
Actinas/metabolismo , Aminoácidos/química , Proteínas dos Microfilamentos/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Actinas/química , Alelos , Arginina/química , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Galactose/química , Deleção de Genes , Genótipo , Glutationa Transferase/metabolismo , Espectrometria de Massas , Proteínas dos Microfilamentos/química , Fatores de Alongamento de Peptídeos , Fenótipo , Fosforilação , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional
12.
Mol Cell Biol ; 23(23): 8829-45, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14612422

RESUMO

The nucleosome remodeling complex SWI/SNF is a coactivator for yeast transcriptional activator Gcn4p. We provide strong evidence that Gcn4p recruits the entire SWI/SNF complex to its target genes ARG1 and SNZ1 but that SWI/SNF is dispensable for Gcn4p binding to these promoters. It was shown previously that Snf2p/Swi2p, Snf5p, and Swi1p interact directly with Gcn4p in vitro. However, we found that Snf2p is not required for recruitment of SWI/SNF by Gcn4p nor can Snf2p be recruited independently of other SWI/SNF subunits in vivo. Snf5p was not recruited as an isolated subunit but was required with Snf6p and Swi3p for optimal recruitment of other SWI/SNF subunits. The results suggest that Snf2p, Snf5p, and Swi1p are recruited only as subunits of intact SWI/SNF, a model consistent with the idea that Gcn4p makes multiple contacts with SWI/SNF in vivo. Interestingly, Swp73p is necessary for efficient SWI/SNF recruitment at SNZ1 but not at ARG1, indicating distinct subunit requirements for SWI/SNF recruitment at different genes. Optimal recruitment of SWI/SNF by Gcn4p also requires specific subunits of SRB mediator (Gal11p, Med2p, and Rox3p) and SAGA (Ada1p and Ada5p) but is independent of the histone acetyltransferase in SAGA, Gcn5p. We suggest that SWI/SNF recruitment is enhanced by cooperative interactions with subunits of SRB mediator and SAGA recruited by Gcn4p to the same promoter but is insensitive to histone H3 acetylation by Gcn5p.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases , Sequência de Bases , Proteínas Cromossômicas não Histona , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Genes Fúngicos , Genótipo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Proteína SMARCB1 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
13.
Mol Cell Biol ; 23(8): 2800-20, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12665580

RESUMO

Transcriptional activators interact with multisubunit coactivators that modify chromatin structure or recruit the general transcriptional machinery to their target genes. Budding yeast cells respond to amino acid starvation by inducing an activator of amino acid biosynthetic genes, Gcn4p. We conducted a comprehensive analysis of viable mutants affecting known coactivator subunits from the Saccharomyces Genome Deletion Project for defects in activation by Gcn4p in vivo. The results confirm previous findings that Gcn4p requires SAGA, SWI/SNF, and SRB mediator (SRB/MED) and identify key nonessential subunits of these complexes required for activation. Among the numerous histone acetyltransferases examined, only that present in SAGA, Gcn5p, was required by Gcn4p. We also uncovered a dependence on CCR4-NOT, RSC, and the Paf1 complex. In vitro binding experiments suggest that the Gcn4p activation domain interacts specifically with CCR4-NOT and RSC in addition to SAGA, SWI/SNF, and SRB/MED. Chromatin immunoprecipitation experiments show that Mbf1p, SAGA, SWI/SNF, SRB/MED, RSC, CCR4-NOT, and the Paf1 complex all are recruited by Gcn4p to one of its target genes (ARG1) in vivo. We observed considerable differences in coactivator requirements among several Gcn4p-dependent promoters; thus, only a subset of the array of coactivators that can be recruited by Gcn4p is required at a given target gene in vivo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Sequência de Bases , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Deleção de Genes , Genes Fúngicos , Substâncias Macromoleculares , Complexo Mediador , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Plasmídeos/genética , Proteínas Quinases/química , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleases/química , Ribonucleases/genética , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transativadores/química , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA