Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 92(4): e0049523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38451080

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infects up to a quarter of the world's population. Although immune responses can control Mtb infection, 5%-10% of infected individuals can progress to active TB disease (progressors). A myriad of host factors regulate disease progression in TB and a better understanding of immune correlates of protection and disease is pivotal for the development of new therapeutics. Comparison of human whole blood transcriptomic metadata with that of macaque TB progressors and Mtb-infected diversity outbred mice (DO) led to the identification of differentially regulated gene (DEG) signatures, associated with TB progression or control. The current study assessed the function of Phospholipase C epsilon (PLCƐ1), the top downregulated gene across species in TB progressors, using a gene-specific knockout mouse model of Mtb infection and in vitro Mtb-infected bone marrow-derived macrophages. PLCƐ1 gene expression was downregulated in TB progressors across species. PLCε1 deficiency in the mouse model resulted in increased susceptibility to Mtb infection, coincident accumulation of lung myeloid cells, and reduced ability to mount antibacterial responses. However, PLCε1 was not required for the activation and accumulation of T cells in mice. Our results suggest an important early role for PLCƐ1 in shaping innate immune response to TB and may represent a putative target for host-directed therapy.


Assuntos
Mycobacterium tuberculosis , Fosfoinositídeo Fosfolipase C , Tuberculose , Humanos , Camundongos , Animais , Ativação de Macrófagos , Imunidade Inata
2.
Hum Vaccin Immunother ; 20(1): 2302070, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38190806

RESUMO

Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis (Mtb), affects the lungs of infected individuals (pulmonary TB) but can also affect other sites (extrapulmonary TB). The only licensed vaccine Mycobacterium bovis bacillus Calmette-Guerin (BCG) protects infants and young children but exhibits variable efficacy in protecting against adult pulmonary TB. Poor compliance and prolonged treatment regimens associated with the use of chemotherapy has contributed to the development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Thus, there is an urgent need for the design of more effective vaccines against TB. The development of safe and novel adjuvants for human use is critical. In this study, we demonstrate that saponin-based TQL1055 adjuvant when formulated with a TLR4 agonist (PHAD) and Mtb specific immunodominant antigens (ESAT-6 and Ag85B) and delivered intramuscularly in mice, the SA-TB vaccine induced potent lung immune responses. Additionally, the SA-TB vaccine conferred significant protection against Mtb infection, comparable with levels induced by BCG. These findings support the development of a SA-TB vaccine comprising TQL1055, as a novel, safe and effective TB vaccine for potential use in humans.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Saponinas , Vacinas contra a Tuberculose , Tuberculose Pulmonar , Adulto , Criança , Lactente , Humanos , Animais , Camundongos , Pré-Escolar , Vacina BCG , Adjuvantes Imunológicos , Tuberculose Pulmonar/prevenção & controle
3.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012543

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Linfócitos B , Tecido Linfoide , Centro Germinativo , Fatores de Transcrição
4.
Immunohorizons ; 5(9): 752-759, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561226

RESUMO

CXCL17 is a novel mucosal chemokine that mediates myeloid cell recruitment and bactericidal activity and highly expressed in the respiratory tract. However, its role in tuberculosis (TB) immunopathogenesis or protection remains unknown. In this study, we evaluated the function of CXCL17 in a mouse model of aerosol infection with the clinical W-Beijing lineage Mycobacterium tuberculosis hypervirulent HN878 strain. Our results show that CXCL17 production increases in the lung of M. tuberculosis-infected mice during acute and chronic stages of infection. Moreover, in vitro M. tuberculosis infection of epithelial cells and myeloid cells induces production of CXCL17. In humans, lower serum CXCL17 levels are observed among active pulmonary TB patients when compared with subjects with latent TB infection and healthy controls, suggesting a protective role. However, mice treated with rCXCL17 show similar lung bacterial burden and inflammation compared with control animals, despite an increased lung myeloid cell accumulation. Finally, CXCL17-/- mice are not more susceptible to TB than wild-type animals. These findings suggest that CXCL17 is induced in both murine epithelial and myeloid cells upon M. tuberculosis infection and increased expression during human latent TB infection. However, CXCL17 may have a dispensable role during pulmonary TB.


Assuntos
Quimiocinas CXC/metabolismo , Tuberculose Latente/imunologia , Pulmão/patologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Animais , Estudos de Casos e Controles , Quimiocinas CXC/administração & dosagem , Quimiocinas CXC/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Voluntários Saudáveis , Humanos , Exposição por Inalação/efeitos adversos , Tuberculose Latente/sangue , Tuberculose Latente/diagnóstico , Tuberculose Latente/microbiologia , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
5.
Pharmaceutics ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056910

RESUMO

Clofazimine (CFZ) is a poorly soluble, weakly basic, small molecule antibiotic clinically used to treat leprosy and is now in clinical trials as a treatment for multidrug resistant tuberculosis and COVID-19. CFZ exhibits complex, context-dependent pharmacokinetics that are characterized by an increasing half-life in long term treatment regimens. The systemic pharmacokinetics of CFZ have been previously represented by a nonlinear, 2-compartment model incorporating an expanding volume of distribution. This expansion reflects the soluble-to-insoluble phase transition that the drug undergoes as it precipitates out and accumulates within macrophages disseminated throughout the organism. Using mice as a model organism, we studied the mechanistic underpinnings of this increasing half-life and how the systemic pharmacokinetics of CFZ are altered with continued dosing. To this end, M. tuberculosis infection status and multiple dosing schemes were studied alongside a parameter sensitivity analysis (PSA) to further understanding of systemic drug distribution. Parameter values governing the sigmoidal expansion function that captures the phase transition were methodically varied, and in turn, the systemic concentrations of the drug were calculated and compared to the experimentally measured concentrations of drug in serum and spleen. The resulting amounts of drug sequestered were dependent on the total mass of CFZ administered and the duration of drug loading. This phenomenon can be captured by altering three different parameters of an expansion function corresponding to key biological determinants responsible for the precipitation and the accumulation of the insoluble drug mass in macrophages. Through this analysis of the context dependent pharmacokinetics of CFZ, a predictive framework for projecting the systemic distribution and self-assembly of precipitated drug complexes as intracellular mechanopharmaceutical devices of this and other drugs exhibiting similarly complex pharmacokinetics can be constructed.

6.
Pharmaceutics ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056913

RESUMO

Clofazimine (CFZ) is a weakly basic, small-molecule antibiotic used for the treatment of mycobacterial infections including leprosy and multidrug-resistant tuberculosis. Upon prolonged oral administration, CFZ precipitates and accumulates within macrophages throughout the host. To model the pharmacokinetics of CFZ, the volume of distribution (Vd) was considered as a varying parameter that increases with continuous drug loading. Fitting the time-dependent change in drug mass and concentration data obtained from CFZ-treated mice, we performed a quantitative analysis of the systemic disposition of the drug over a 20-week treatment period. The pharmacokinetics data were fitted using various classical compartmental models sampling serum and spleen concentration data into separate matrices. The models were constructed in NONMEM together with linear and nonlinear sigmoidal expansion functions to the spleen compartment to capture the phase transition in Vd. The different modeling approaches were compared by Akaike information criteria, observed and predicted concentration correlations, and graphically. Using the composite analysis of the modeling predictions, adaptive fractional CFZ sequestration, Vd and half-life were evaluated. When compared to standard compartmental models, an adaptive Vd model yielded a more accurate data fit of the drug concentrations in both the serum and spleen. Including a nonlinear sigmoidal equation into compartmental models captures the phase transition of drugs such as CFZ, greatly improving the prediction of population pharmacokinetics and yielding further insight into the mechanisms of drug disposition.

7.
Front Pharmacol ; 12: 799034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126135

RESUMO

Converting a vaccine into a thermostable dry powder is advantageous as it reduces the resource burden linked with the cold chain and provides flexibility in dosage and administration through different routes. Such a dry powder presentation may be especially useful in the development of a vaccine towards the respiratory infectious disease tuberculosis (TB). This study assesses the immunogenicity and protective efficacy of spray-dried ID93+GLA-SE, a promising TB vaccine candidate, against Mycobacterium tuberculosis (Mtb) in a murine model when administered via different routes. Four administration routes for the spray-dried ID93+GLA-SE were evaluated along with relevant controls-1) reconstitution and intramuscular injection, 2) reconstitution and intranasal delivery, 3) nasal dry powder delivery via inhalation, and 4) pulmonary dry powder delivery via inhalation. Dry powder intranasal and pulmonary delivery was achieved using a custom nose-only inhalation device, and optimization using representative vaccine-free powder demonstrated that approximately 10 and 44% of the maximum possible delivered dose would be delivered for intranasal delivery and pulmonary delivery, respectively. Spray-dried powder was engineered according to the different administration routes including maintaining approximately equivalent delivered doses of ID93 and GLA. Vaccine properties of the different spray-dried lots were assessed for quality control in terms of nanoemulsion droplet diameter, polydispersity index, adjuvant content, and antigen content. Our results using the Mtb mouse challenge model show that both intranasal reconstituted vaccine delivery as well as pulmonary dry powder vaccine delivery resulted in Mtb control in infected mice comparable to traditional intramuscular delivery. Improved protection in these two vaccinated groups over their respective control groups coincided with the presence of cytokine-producing T cell responses. In summary, our results provide novel vaccine formulations and delivery routes that can be harnessed to provide protection against Mtb infection.

8.
Front Immunol ; 11: 1452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793199

RESUMO

The current tuberculosis (TB) vaccine, Bacille Calmette-Guerin (BCG), is effective in preventing TB in young children but was developed without a basic understanding of human immunology. Most modern TB vaccine candidates have targeted CD4+ T cell responses, thought to be important for protection against TB disease, but not known to be sufficient or critical for protection. Advances in knowledge of host responses to TB afford opportunities for developing TB vaccines that target immune components not conventionally considered. Here, we describe the potential of targeting NK cells, innate immune training, B cells and antibodies, and Th17 cells in novel TB vaccine development. We also discuss attempts to target vaccine immunity specifically to the lung, the primary disease site in humans.


Assuntos
Linfócitos B/imunologia , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/fisiologia , Células Th17/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Pulmão/microbiologia
9.
J Clin Invest ; 130(6): 3098-3112, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134742

RESUMO

Neutrophil accumulation is associated with lung pathology during active tuberculosis (ATB). However, the molecular mechanism or mechanisms by which neutrophils accumulate in the lung and contribute to TB immunopathology are not fully delineated. Using the well-established mouse model of TB, our new data provide evidence that the alarmin S100A8/A9 mediates neutrophil accumulation during progression to chronic TB. Depletion of neutrophils or S100A8/A9 deficiency resulted in improved Mycobacterium tuberculosis (Mtb) control during chronic but not acute TB. Mechanistically, we demonstrate that, following Mtb infection, S100A8/A9 expression is required for upregulation of the integrin molecule CD11b specifically on neutrophils, mediating their accumulation during chronic TB disease. These findings are further substantiated by increased expression of S100A8 and S100A9 mRNA in whole blood in human TB progressors when compared with nonprogressors and rapidly decreased S100A8/A9 protein levels in the serum upon TB treatment. Furthermore, we demonstrate that S100A8/A9 serum levels along with chemokines are useful in distinguishing between ATB and asymptomatic Mtb-infected latent individuals. Thus, our results support targeting S100A8/A9 pathways as host-directed therapy for TB.


Assuntos
Antígeno CD11b/imunologia , Calgranulina A/imunologia , Calgranulina B/imunologia , Mycobacterium tuberculosis/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Tuberculose/imunologia , Animais , Antígeno CD11b/genética , Calgranulina A/genética , Calgranulina B/genética , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Tuberculose/genética , Tuberculose/patologia , Tuberculose/terapia
10.
Artigo em Inglês | MEDLINE | ID: mdl-29735562

RESUMO

The antileprosy drug clofazimine was recently repurposed as part of a newly endorsed short-course regimen for multidrug-resistant tuberculosis. It also enables significant treatment shortening when added to the first-line regimen for drug-susceptible tuberculosis in a mouse model. However, clofazimine causes dose- and duration-dependent skin discoloration in patients, and the optimal clofazimine dosing strategy in the context of the first-line regimen is unknown. We utilized a well-established mouse model to systematically address the impacts of duration, dose, and companion drugs on the treatment-shortening activity of clofazimine in the first-line regimen. In all studies, the primary outcome was relapse-free cure (culture-negative lungs) 6 months after stopping treatment, and the secondary outcome was bactericidal activity, i.e., the decline in the lung bacterial burden during treatment. Our findings indicate that clofazimine activity is most potent when coadministered with first-line drugs continuously throughout treatment and that equivalent treatment-shortening results are obtained with half the dose commonly used in mice. However, our studies also suggest that clofazimine at low exposures may have negative impacts on treatment outcomes, an effect that was evident only after the first 3 months of treatment. These data provide a sound evidence base to inform clofazimine dosing strategies to optimize the antituberculosis effect while minimizing skin discoloration. The results also underscore the importance of conducting long-term studies to allow the full evaluation of drugs administered in combination over long durations.


Assuntos
Antituberculosos/uso terapêutico , Clofazimina/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
11.
J Antimicrob Chemother ; 72(2): 455-461, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27798204

RESUMO

OBJECTIVES: The anti-leprosy drug clofazimine has been shown to have antimicrobial activity against Mycobacterium tuberculosis and has been associated with treatment-shortening activity in both clinical and preclinical studies of TB chemotherapy. However, a reported lack of early bactericidal activity (EBA) in TB patients has raised questions regarding the usefulness of clofazimine as an anti-TB drug. Our objective was to systematically evaluate the EBA of clofazimine in vitro and in vivo to provide insight into how and when this drug exerts its antimicrobial activity against M. tuberculosis. METHODS: We evaluated the 14 day EBA of clofazimine (i) in vitro at concentrations ranging from 4 times below to 4 times above the MIC for M. tuberculosis and (ii) in vivo in infected BALB/c mice at doses ranging from 1.5 to 100 mg/kg/day, and serum clofazimine levels were measured. In both experiments, isoniazid was used as the positive control. RESULTS: In vitro, clofazimine, at any concentration tested, did not exhibit bactericidal activity during the first week of exposure; however, in the second week, it exhibited concentration-dependent antimicrobial activity. In vivo, clofazimine, at any dose administered, did not exhibit bactericidal activity during the first week, and limited antimicrobial activity was observed during the second week of administration. While serum clofazimine levels were clearly dose dependent, the antimicrobial activity was not significantly related to the dose administered. CONCLUSIONS: Our data suggest that clofazimine's delayed antimicrobial activity may be due more to its mechanism of action rather than to host-related factors.


Assuntos
Antituberculosos/uso terapêutico , Carga Bacteriana/efeitos dos fármacos , Clofazimina/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/farmacocinética , Clofazimina/farmacocinética , Isoniazida/uso terapêutico , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tuberculose Pulmonar/microbiologia
12.
Antimicrob Agents Chemother ; 60(5): 2864-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26926638

RESUMO

Experimental and clinical studies have indicated that the antileprosy drug clofazimine may contribute treatment-shortening activity when included in tuberculosis treatment regimens. Clofazimine accumulates to high levels in tissues, has a long half-life, and remains in the body for months after administration is stopped. We hypothesized that in tuberculosis treatment, accumulated clofazimine may contribute sustained antimicrobial activity after treatment cessation, and we used the BALB/c mouse model of chronic tuberculosis chemotherapy to address this hypothesis. Mycobacterium tuberculosis-infected mice were treated for 4 weeks or 8 weeks with either isoniazid alone, clofazimine alone, the first-line regimen rifampin-isoniazid-pyrazinamide-ethambutol, or a first-line regimen where clofazimine was administered in place of ethambutol. To evaluate posttreatment antimicrobial activity, bacterial regrowth in the lungs and spleens was assessed at the day of treatment cessation and 2, 4, 6, and 8 weeks after treatment was stopped. Bacterial regrowth was delayed in all mice receiving clofazimine, either alone or in combination, compared to the mice that did not receive clofazimine. This effect was especially evident in mice receiving multidrug therapy. In mice not receiving clofazimine, bacterial regrowth began almost immediately after treatment was stopped, while in mice receiving clofazimine, bacterial regrowth was delayed for up to 6 weeks, with the duration of sustained antimicrobial activity being positively associated with the time that serum clofazimine levels remained at or above the 0.25-µg/ml MIC for M. tuberculosis Thus, sustained activity of clofazimine may be important in the treatment-shortening effect associated with this drug.


Assuntos
Antituberculosos/uso terapêutico , Clofazimina/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Quimioterapia Combinada , Etambutol/uso terapêutico , Feminino , Isoniazida/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico , Suspensão de Tratamento
13.
Antimicrob Agents Chemother ; 59(6): 3042-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753644

RESUMO

The antileprosy drug clofazimine has shown potential for shortening tuberculosis treatment; however, the current dosing of the drug is not evidence based, and the optimal dosing is unknown. Our objective was to conduct a preclinical evaluation of the pharmacokinetics and pharmacodynamics of clofazimine in the mouse model of tuberculosis, with the goal of providing useful information on dosing for future studies. Pharmacokinetic parameters were evaluated in infected and uninfected BALB/c mice. Pharmacodynamic parameters were evaluated in Mycobacterium tuberculosis-infected mice that were treated for 12 weeks with one of six different clofazimine dosing regimens, i.e., doses of 6.25, 12.5, and 25 mg/kg of body weight/day and 3 regimens with loading doses. Clofazimine progressively accumulated in the lungs, livers, and spleens of the mice, reaching levels of greater than 50 µg/g in all tissues by 4 weeks of administration, while serum drug levels remained low at 1 to 2 µg/ml. Elimination of clofazimine was extremely slow, and the half-life was dependent on the duration of drug administration. Clofazimine exhibited dose-dependent tissue and serum concentrations. At any dose, clofazimine did not have bactericidal activity during the first 2 weeks of administration but subsequently demonstrated potent, dose-independent bactericidal activity. The antituberculosis activity of clofazimine was dependent on neither the dose administered nor the drug concentrations in the tissues, suggesting that much lower doses could be effectively used for tuberculosis treatment.


Assuntos
Antituberculosos/farmacocinética , Clofazimina/farmacocinética , Tuberculose/sangue , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/uso terapêutico , Cromatografia Líquida , Clofazimina/uso terapêutico , Feminino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 112(3): 869-74, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561537

RESUMO

A key drug for the treatment of leprosy, clofazimine has recently been associated with highly effective and significantly shortened regimens for the treatment of multidrug-resistant tuberculosis (TB). Consequently, we hypothesized that clofazimine may also shorten the duration of treatment for drug-susceptible TB. We conducted a controlled trial in the mouse model of TB chemotherapy comparing the activity of the 6-mo standard regimen for TB treatment, i.e., 2 mo of daily rifampin, isoniazid, pyrazinamide, and ethambutol followed by 4 mo of rifampin and isoniazid, with a 4-mo clofazimine-containing regimen: 2 mo of daily rifampin, isoniazid, pyrazinamide, and clofazimine followed by 2 mo of rifampin, isoniazid, and clofazimine. Treatment efficacy was assessed on the basis of Mycobacterium tuberculosis colony counts in the lungs and spleens during treatment and on the proportion of mice with culture-positive relapse 6 mo after treatment cessation. No additive effect of clofazimine was observed after the first week of treatment, but, by the second week of treatment, the colony counts were significantly lower in the clofazimine-treated mice than in the mice receiving the standard regimen. Lung culture conversion was obtained after 3 and 5 mo in mice treated with the clofazimine-containing and standard regimens, respectively, and relapse-free cure was obtained after 3 and 6 mo of treatment with the clofazimine-containing and standard regimens, respectively. Thus, clofazimine is a promising anti-TB drug with the potential to shorten the duration of TB chemotherapy by at least half (3 mo vs. 6 mo) in the mouse model of TB.


Assuntos
Antituberculosos/uso terapêutico , Clofazimina/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C
15.
Int J Radiat Biol ; 87(9): 923-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21631155

RESUMO

PURPOSE: The in vitro micronucleus (MN) assay is a reliable method to assess radiation-induced chromosomal damage in human peripheral blood lymphocytes. It is used to evaluate in vivo radiation over-exposure and to assess in vitro chromosomal radiosensitivity. A limitation of the MN assay is the relatively high and variable spontaneous MN frequency that restricts low-dose estimation to doses of about 0.3 gray (Gy). As radiation-induced MN mainly contain acentric fragments and spontaneous MN originate from lagging chromosomes, both MN types can be distinguished from each other by using fluorescence in situ hybridisation (FISH) with a pan-centromeric probe. The aim of this study was to investigate if the sensitivity, reliability and processing time of the MN assay can be enhanced by combining the automated MN assay with pan-centromere scoring. MATERIALS AND METHODS: Blood samples from 10 healthy donors were irradiated in vitro with low doses of gamma-rays. Dose response curves were determined for fully-automated and semi-automated MN scoring and semi-automated scoring of centromere negative MN (MNCM-). RESULTS: A good correlation was obtained between fully-automated and semi-automated MN scoring (r(2) = 0.9973) and between fully automated MN scoring and semi-automated scoring of MNCM- (r(2) = 0.998). With the Wilcoxon test, a significant p value was obtained between 0 and 0.2 Gy for the fully-automated MN analysis, between 0 and 0.1 Gy for semi-automated MN analysis and between 0 and 0.05 Gy for semi-automated scoring of MNCM-. CONCLUSION: The semi-automated micronucleus-centromere assay combines high-speed MN analysis with a more accurate assessment in the low-dose range which makes it of special interest for large-scale radiation applications.


Assuntos
Centrômero/efeitos da radiação , Linfócitos/citologia , Linfócitos/efeitos da radiação , Testes para Micronúcleos/métodos , Adulto , Automação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Hibridização in Situ Fluorescente , Indóis/metabolismo , Linfócitos/metabolismo , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...