Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 168: 112122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703516

RESUMO

As the recovery from gait perturbations is coordinatively complex and error-prone, people often adopt anticipatory strategies when the perturbation is expected. These anticipatory strategies act as a first line of defence against potential balance loss. Since age-related changes in the sensory and neuromotor systems could make the recovery from external perturbations more difficult, it is important to understand how older adults implement anticipatory strategies. Therefore, we exposed healthy young (N = 10, 22 ± 1.05 yrs.) and older adults (N = 10, 64.2 ± 6.07 yrs.) to simulated slips on a treadmill with consistent properties and assessed if the reliance on anticipatory control differed between groups. Results showed that for the unperturbed steps in between perturbations, step length decreased and the backward (BW) margin of stability (MOS) increased (i.e., enhanced dynamic stability against backward loss of balance) in the leg that triggered the slip, while step lengths increased and BW MOS decreased in the contralateral leg. This induced step length and BW MOS asymmetry was significantly larger for older adults. When exposed to a series of predictable slips, healthy older adults thus rely more heavily on anticipatory control to proactively accommodate the expected backward loss of balance.


Assuntos
Marcha , Equilíbrio Postural , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Pessoa de Meia-Idade , Idoso , Marcha/fisiologia , Acidentes por Quedas/prevenção & controle , Adulto , Envelhecimento/fisiologia , Antecipação Psicológica/fisiologia , Fenômenos Biomecânicos , Adulto Jovem , Caminhada/fisiologia
2.
Front Physiol ; 14: 1065974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909231

RESUMO

The ability to flexibly respond and adapt the walking pattern over time to unexpected gait perturbations is pivotal for safe and efficient locomotion. However, these abilities might be affected by age due to age-related changes in sensorimotor functioning. In this cross-sectional lifespan study, we used a split-belt paradigm to determine how age affects the initial response (i.e., flexibility)-and the ability to adapt after prolonged exposure-to a sustained gait perturbation. Healthy adults (N = 75) of different ages (12-13 per decade) were included and walked on a split-belt treadmill, in which a sustained gait perturbation was imposed by increasing one of the belt speeds. Linear regression models, with the evoked spatiotemporal gait asymmetry during the early perturbation and late adaptation, were performed to determine the effects of age on the flexibility and adaptability to split-belt walking. Results showed that the flexibility to respond to an unexpected perturbation decreased across the lifespan, as evidenced by a greater step length asymmetry (SLA) during the early perturbation phase. Despite this reduced flexibility in step lengths, late adaptation levels in SLA were comparable across different ages. With increasing age, however, subjects needed more steps to reach a stable level in SLA. Finally, when the belts were set to symmetrical speeds again, the magnitude of SLA (i.e., the aftereffects) increased with age. Collectively, these findings suggest that natural ageing comes with a decrease in gait flexibility, while the ability to adapt to split-belt walking was not affected by age-only how adaptation was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...