Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Syst Evol ; 9: 161-200, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35978986

RESUMO

Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced here. Citation: Crous PW, Sandoval-Denis M, Costa MM, Groenewald JZ, van Iperen AL, Starink-Willemse M, Hernández-Restrepo M, Kandemir H, Ulaszewski B, de Boer W, Abdel-Azeem AM, Abdollahzadeh J, Akulov A, Bakhshi M, Bezerra JDP, Bhunjun CS, Câmara MPS, Chaverri P, Vieira WAS, Decock CA, Gaya E, Gené J, Guarro J, Gramaje D, Grube M, Gupta VK, Guarnaccia V, Hill R, Hirooka Y, Hyde KD, Jayawardena RS, Jeewon R, Jurjevic Z, Korsten L, Lamprecht SC, Lombard L, Maharachchikumbura SSN, Polizzi G, Rajeshkumar KC, Salgado-Salazar C, Shang Q-J, Shivas RG, Summerbell RC, Sun GY, Swart WJ, Tan YP, Vizzini A, Xia JW, Zare R, González CD, Iturriaga T, Savary O, Coton M, Coton E, Jany J-L, Liu C, Zeng Z-Q, Zhuang W-Y, Yu Z-H, Thines M (2022). Fusarium and allied fusarioid taxa (FUSA). 1. Fungal Systematics and Evolution 9: 161-200. doi: 10.3114/fuse.2022.09.08.

2.
Persoonia ; 44: 301-459, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33116344

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.

3.
Persoonia ; 43: 223-425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32214501

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.

4.
Persoonia ; 33: 212-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25737601

RESUMO

Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera. Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Corymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

5.
Stud Mycol ; 75(1): 307-90, 2013 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24014902

RESUMO

Septoria represents a genus of plant pathogenic fungi with a wide geographic distribution, commonly associated with leaf spots and stem cankers of a broad range of plant hosts. A major aim of this study was to resolve the phylogenetic generic limits of Septoria, Stagonospora, and other related genera such as Sphaerulina, Phaeosphaeria and Phaeoseptoria using sequences of the the partial 28S nuclear ribosomal RNA and RPB2 genes of a large set of isolates. Based on these results Septoria is shown to be a distinct genus in the Mycosphaerellaceae, which has mycosphaerella-like sexual morphs. Several septoria-like species are now accommodated in Sphaerulina, a genus previously linked to this complex. Phaeosphaeria (based on P. oryzae) is shown to be congeneric with Phaeoseptoria (based on P. papayae), which is reduced to synonymy under the former. Depazea nodorum (causal agent of nodorum blotch of cereals) and Septoria avenae (causal agent of avenae blotch of barley and rye) are placed in a new genus, Parastagonospora, which is shown to be distinct from Stagonospora (based on S. paludosa) and Phaeosphaeria. Partial nucleotide sequence data for five gene loci, ITS, LSU, EF-1α, RPB2 and Btub were generated for all of these isolates. A total of 47 clades or genera were resolved, leading to the introduction of 14 new genera, 36 new species, and 19 new combinations. TAXONOMIC NOVELTIES: New genera - Acicuseptoria Quaedvlieg, Verkley & Crous, Cylindroseptoria Quaedvlieg, Verkley & Crous, Kirstenboschia Quaedvlieg, Verkley & Crous, Neoseptoria Quaedvlieg, Verkley & Crous, Neostagonospora Quaedvlieg, Verkley & Crous, Parastagonospora Quaedvlieg, Verkley & Crous, Polyphialoseptoria Quaedvlieg, R.W. Barreto, Verkley & Crous, Ruptoseptoria Quaedvlieg, Verkley & Crous, Septorioides Quaedvlieg, Verkley & Crous, Setoseptoria Quaedvlieg, Verkley & Crous, Stromatoseptoria Quaedvlieg, Verkley & Crous, Vrystaatia Quaedvlieg, W.J. Swart, Verkley & Crous, Xenobotryosphaeria Quaedvlieg, Verkley & Crous, Xenoseptoria Quaedvlieg, H.D. Shin, Verkley & Crous. New species - Acicuseptoria rumicis Quaedvlieg, Verkley & Crous, Caryophylloseptoria pseudolychnidis Quaedvlieg, H.D. Shin, Verkley & Crous, Coniothyrium sidae Quaedvlieg, Verkley, R.W. Barreto & Crous, Corynespora leucadendri Quaedvlieg, Verkley & Crous, Cylindroseptoria ceratoniae Quaedvlieg, Verkley & Crous, Cylindroseptoria pistaciae Quaedvlieg, Verkley & Crous, Kirstenboschia diospyri Quaedvlieg, Verkley & Crous, Neoseptoria caricis Quaedvlieg, Verkley & Crous, Neostagonospora caricis Quaedvlieg, Verkley & Crous, Neostagonospora elegiae Quaedvlieg, Verkley & Crous, Paraphoma dioscoreae Quaedvlieg, H.D. Shin, Verkley & Crous, Parastagonospora caricis Quaedvlieg, Verkley & Crous, Parastagonospora poae Quaedvlieg, Verkley & Crous, Phlyctema vincetoxici Quaedvlieg, Verkley & Crous, Polyphialoseptoria tabebuiae-serratifoliae Quaedvlieg, Alfenas & Crous, Polyphialoseptoria terminaliae Quaedvlieg, R.W. Barreto, Verkley & Crous, Pseudoseptoria collariana Quaedvlieg, Verkley & Crous, Pseudoseptoria obscura Quaedvlieg, Verkley & Crous, Sclerostagonospora phragmiticola Quaedvlieg, Verkley & Crous, Septoria cretae Quaedvlieg, Verkley & Crous, Septoria glycinicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria oenanthicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria pseudonapelli Quaedvlieg, H.D. Shin, Verkley & Crous, Setophoma chromolaenae Quaedvlieg, Verkley, R.W. Barreto & Crous, Setoseptoria phragmitis Quaedvlieg, Verkley & Crous, Sphaerulina amelanchier Quaedvlieg, Verkley & Crous, Sphaerulina pseudovirgaureae Quaedvlieg, Verkley & Crous, Sphaerulina viciae Quaedvlieg, H.D. Shin, Verkley & Crous, Stagonospora duoseptata Quaedvlieg, Verkley & Crous, Stagonospora perfecta Quaedvlieg, Verkley & Crous, Stagonospora pseudocaricis Quaedvlieg, Verkley, Gardiennet & Crous, Stagonospora pseudovitensis Quaedvlieg, Verkley & Crous, Stagonospora uniseptata Quaedvlieg, Verkley & Crous, Vrystaatia aloeicola Quaedvlieg, Verkley, W.J. Swart & Crous, Xenobotryosphaeria calamagrostidis Quaedvlieg, Verkley & Crous, Xenoseptoria neosaccardoi Quaedvlieg, H.D. Shin, Verkley & Crous. New combinations - Parastagonospora avenae (A.B. Frank) Quaedvlieg, Verkley & Crous, Parastagonospora nodorum (Berk.) Quaedvlieg, Verkley & Crous, Phaeosphaeria papayae (Speg.) Quaedvlieg, Verkley & Crous, Pseudocercospora domingensis (Petr. & Cif.) Quaedvlieg, Verkley & Crous, Ruptoseptoria unedonis (Roberge ex Desm.) Quaedvlieg, Verkley & Crous, Septorioides pini-thunbergii (S. Kaneko) Quaedvlieg, Verkley & Crous, Sphaerulina abeliceae (Hiray.) Quaedvlieg, Verkley & Crous, Sphaerulina azaleae (Voglino) Quaedvlieg, Verkley & Crous, Sphaerulina berberidis (Niessl) Quaedvlieg, Verkley & Crous, Sphaerulina betulae (Pass.) Quaedvlieg, Verkley & Crous, Sphaerulina cercidis (Fr.) Quaedvlieg, Verkley & Crous, Sphaerulina menispermi (Thüm.) Quaedvlieg, Verkley & Crous, Sphaerulina musiva (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina oxyacanthae (Kunze & J.C. Schmidt) Quaedvlieg, Verkley & Crous, Sphaerulina patriniae (Miura) Quaedvlieg, Verkley & Crous, Sphaerulina populicola (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina quercicola (Desm.) Quaedvlieg, Verkley & Crous, Sphaerulina rhabdoclinis (Butin) Quaedvlieg, Verkley & Crous, Stromatoseptoria castaneicola (Desm.) Quaedvlieg, Verkley & Crous. Typifications: Epitypifications - Phaeosphaeria oryzae I. Miyake, Phaeoseptoria papayae Speg.; Neotypification - Hendersonia paludosa Sacc. & Speg.

6.
Persoonia ; 31: 188-296, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24761043

RESUMO

Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

7.
Plant Dis ; 97(1): 140, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30722301

RESUMO

Traditionally the San people of southern Africa used Hoodia species as an appetite suppressant and various medicinal purposes (1). Hoodia gordonii (Masson) Sweet ex Decne therefore became a commercially sought-after species due to the claim of its anorectic activity. During 2004, extensive wilting was observed on H. gordonii in commercial plantings near Kakamas and Pofadder (northern Cape, South Africa). The wilting gradually increased, which caused stems to rot at the base and shrivel up, causing plants to collapse and die. Affected plants exhibited discoloration in the stems' vascular tissues. Vascular tissue excised from stems and excisions of roots were surface sterilized for 3 min in 70% ethanol followed by 3 min in 1% NaOCl, rinsed with sterile water and plated onto Van Wyks Agar, a Fusarium-selective medium (3). Isolates were grown on potato dextrose agar (PDA) and carnation leaf agar (CLA) for 14 days at 25°C. The morphological features were examined (2); identification was based on colony and sporodochia color as well as conidial morphology from single-spore colonies. The conidial morphology includes the presence or absence of macro- and microconidia and chlamydospores as well as the shape, number of septa, and basal cell of the macroconidia. The shape, characteristics, and phialides of the microconidia was also included in this analysis. To confirm pathogenicity, 18 1-year-old H. gordonii plants, 18 H. pilifera (L.f.) Plowes subsp. annulata (N.E.Br.) Bruyns plants, and 18 carnation seedlings were planted into autoclaved soil amended with 1% finely grounded oats inoculated with isolate CBS 132482 (PREM 11783), while control plants were planted in sterile soil. After 30 days, tissue was dissected from each stem, surface sterilized, rinsed, and plated on CLA and PDA for recovery of fungi. Control plants and carnations remained healthy and no fungi were recovered. All Hoodia plants displayed wilt symptoms and F. oxysporum were reisolated from the infected plants. DNA was extracted from the representative isolate (CBS 132482) and a fragment of the translation elongation factor 1-alpha (EF-1α) gene was amplified using primers EF-1/EF-2 by the polymerase chain reaction assay (4). After the isolate was sequenced and aligned, BLAST analysis of the 603-bp fragment (GenBank Accession No. JX003858) showed a 100% homology with F. oxysporum (GenBank Accession No. GU226828). The beta tubulin gene sequenced (GenBank Accession No. JX003859) was amplified using the primers Bt-2a/Bt-2b. BLAST searches with the resulting 311-bp fragment showed a 99.4% homology with several isolates of F. oxysporum in the GenBank database (JQ265753; FR828825; DQ092480). The fungus had a specific host preference because it did not infect carnations as well as previously tested plants, which included beans, pumpkin, tomato, and watermelon. To our knowledge, this is the first report of F. oxysporum causing wilt in H. gordonii in South Africa. References: (1) B. Hargreaves and Q. Turner. Askelpios 86:11, 2002. (2) J. F. Leslie and B. A. Summerell. Page 369 in: The Fusarium Laboratory Manual, Blackwell Professional, Ames, IA, 2006. (3) P. S. van Wyk et al. Phytophylactica 18:67, 1986. (4) P. Vos et al. Nucleic Acids Res. 23:4407, 1995.

8.
Persoonia ; 29: 146-201, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23606771

RESUMO

Novel species of microfungi described in the present study include the following from Australia: Catenulostroma corymbiae from Corymbia, Devriesia stirlingiae from Stirlingia, Penidiella carpentariae from Carpentaria, Phaeococcomyces eucalypti from Eucalyptus, Phialophora livistonae from Livistona, Phyllosticta aristolochiicola from Aristolochia, Clitopilus austroprunulus on sclerophyll forest litter of Eucalyptus regnans and Toxicocladosporium posoqueriae from Posoqueria. Several species are also described from South Africa, namely: Ceramothyrium podocarpi from Podocarpus, Cercospora chrysanthemoides from Chrysanthemoides, Devriesia shakazului from Aloe, Penidiella drakensbergensis from Protea, Strelitziana cliviae from Clivia and Zasmidium syzygii from Syzygium. Other species include Bipolaris microstegii from Microstegium and Synchaetomella acerina from Acer (USA), Brunneiapiospora austropalmicola from Rhopalostylis (New Zealand), Calonectria pentaseptata from Eucalyptus and Macadamia (Vietnam), Ceramothyrium melastoma from Melastoma (Indonesia), Collembolispora aristata from stream foam (Czech Republic), Devriesia imbrexigena from glazed decorative tiles (Portugal), Microcyclospora rhoicola from Rhus (Canada), Seiridium phylicae from Phylica (Tristan de Cunha, Inaccessible Island), Passalora lobeliae-fistulosis from Lobelia (Brazil) and Zymoseptoria verkleyi from Poa (The Netherlands). Valsalnicola represents a new ascomycete genus from Alnus (Austria) and Parapenidiella a new hyphomycete genus from Eucalyptus (Australia). Morphological and culture characteristics along with ITS DNA barcodes are also provided.

9.
Plant Dis ; 91(1): 112, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30781084

RESUMO

Kenaf (Malvaceae; Hibiscus cannabinus L.) is being commercially cultivated in Winterton, South Africa for its high-quality cellulose fibers with approximately 2,000 ha currently under cultivation. In 2004, 25% of 1-month-old kenaf plants grown from seed were observed in the field with severe wilting followed by lodging and mortality within 1 week. Isolations from diseased stem and root tissue on malt extract agar (MEA) consistently yielded Fusarium verticillioides (Sacc.) Nirenberg (2). Pathogenicity tests were conducted by inoculating kenaf seedlings with inoculum prepared from barley grains that had been colonized by the pathogen in vitro for 2 weeks prior to being finely ground in a laboratory mill. Fifty seeds from each of eight kenaf cultivars were incubated at 25°C on sterile filter paper to ensure germination and the absence of pathogens. Germinated seeds were sown in pots (400 cm3) containing steam sterilized loam soil (200 g) by placing 20 germinated seeds from each cultivar, with four replicates (5 seeds per pot), on the soil in each pot and covering them with 100 g of the same soil. Inoculum powder was sprinkled on the surface of the soil in each pot and covered by 100 g of soil. Pots were maintained in a glasshouse at an ambient temperature of 25°C. Sterile ground barley seeds served as the control treatment. Pots were watered daily with 20 ml of water and observed periodically for seedling emergence. The percentage of diseased seedlings was recorded after 3 weeks and the experiment was repeated. Wilting had occurred in 85% of seedlings when they were approximately 4 cm high and all diseased seedlings had died within 1 week thereafter. Subsequent examination revealed dark brown lesions girdling the stem and decayed roots in all instances. No symptoms developed on control plants. From means of combined data, the greatest seedling mortality was observed for cv. Gregg (65%) and the least for cv. Cuba108 (5%). Mean mortalities for the remaining six cultivars ranged from 30 to 55%. The pathogen was reisolated on MEA from all diseased seedlings. To our knowledge, this is the first report of F. verticillioides occurring on kenaf in South Africa. The only other report of Fusarium sp. causing serious damping-off of kenaf is from Iran (1). The potential impact of the pathogen on kenaf production in South Africa must be considered in the implementation of disease control measures. References: (1) J. M. Dempsey. Kenaf. In: Fiber Crops. The University Press of Florida, Gainesville, 1975. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.

10.
Plant Dis ; 88(11): 1284, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30795329

RESUMO

The cashew plant (Anacardium occidentale L.) (family Anacardiaceae) is native to Brazil. It was introduced in East Africa by the Portuguese in the 16th century where it is now widely cultivated, especially in Tanzania, Kenya, and Mozambique. The processed kernels are the most important product derived from the plant, although in Brazil and India, juices, jam, and alcoholic and soft drinks are also made from the pear-shaped edible receptacle. The plant is currently being evaluated in South Africa for commercial production. During May 2002, at least 25% of 5-year-old cashew trees grown from seed in the northern KwaZulu-Natal Province of South Africa were infected with powdery mildew. Signs included extensive growth of white, superficial mycelium bearing upright conidiophores on young shoots with tender leaves, inflorescences, and young receptacles. In severely affected trees, approximately 35% of young shoots and 45% of young receptacles displayed signs of powdery mildew. Severely infected young leaves were brown and deformed in contrast to older leaves that were unaffected. Microscopic examination of diseased tissue revealed hyaline, cylindrical-to-slightly doliform, single-celled conidia (10 to 17.5 × 2.5 to 5 µm) borne in chains. The pathogen was subsequently identified as Oidium anacardii Noack on the basis of morphology (1). No other species of powdery mildew fungi have been reported on cashew. A pathogenicity test was conducted by gently pressing a heavily diseased leaf onto two healthy leaves of each of 10 cashew plants maintained in pots on open benches in the glasshouse at 22 to 25°C and mean relative humidity of 65%. Control treatments entailed pressing an asymptomatic leaf onto each of two healthy leaves per plant. The experiment was conducted three times. After 14 days, at least one powdery mildew colony had developed on 80% of inoculated leaves but were absent from all replications of the control treatment. The source of inoculum for this reported outbreak is unknown, although O. anacardii is known to occur in southern Mozambique less than 100 km from the infected site. Cashew powdery mildew was first officially reported in Tanzania in 1979 where significant crop losses, partially attributable to the pathogen, have been recorded since (3). No significant damage to production has been recorded in Brazil (2). To our knowledge, this is the first report of O. anacardii occurring on cashew in South Africa. References: (1) E. Castellani and F. Casulli. Rivista di Agricoltura Subtropicale e Tropicale 75:211, 1981. (2) F. C. O. Freire et al. Crop Prot. 21:489, 2002. (3) P. J. Martin et al. Crop Prot. 16:5, 1996.

11.
Plant Dis ; 88(4): 333-337, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30812610

RESUMO

Discoloration, cankers, and decay in branches, stems, and root collars of Amaranthus hybridus were observed in Bloemfontein, South Africa. Examination of symptomatic stems revealed larval galleries of the pigweed weevil (Hypolixus haerens). The objectives of this study were to: identify the most common fungal species associated with this damage, determine if the adult pigweed weevil might be a vector for the fungi, and test if the associated fungi can cause the stem canker disease observed in the field. The most common fungal species isolated were Fusarium subglutinans from discolored tissues adjacent to insect galleries (42%), F. subglutinans from weevil larvae (29%), the Alternaria tenuissima group from adult weevils (31%), and the A. tenuissima group from cankered stems (40%). Three of the seven most common fungal species produced cankers following wounding and inoculation, with F. sambucinum and F. oxysporum being the most aggressive. Although fungal species compositions differed (P < 0.01) among the four tissue/insect stage combinations tested, all four had the same major fungal species, suggesting the pigweed weevil as a vector for the Fusarium pathogens. There is significant potential for yield loss affiliated with this insect-fungal association. The identification of this insect-fungal relationship and the pathogens involved in disease set the stage for further research on the etiology and disease management of this important insect-fungal relationship.

12.
Plant Dis ; 87(7): 874, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30812907

RESUMO

Kenaf, Hibiscus cannabinus L. (Malvaceae), is being planted commercially in South Africa for the high quality cellulose fibers that it produces. In a January 2001 survey of 3-month-old kenaf plants grown from seed in experimental plots near Rustenburg, Northwest Province, 30% of plants were observed with severe wilting. Stems at ground level of all infected plants had sunken tan lesions, white mycelial strands, and small, dark brown, 1 to 2 mm diameter sclerotia. Isolations from diseased stem tissue on malt extract agar (MEA) consistently yielded a fungus conforming to the description of Sclerotium rolfsii Sacc. (teleomorph Athelia rolfsii (Curzi) Tu & Kimbrough). Pathogenicity tests were conducted by applying toothpick tips (5 mm) colonized by S. rolfsii on MEA to the stems of 120-day-old potted plants of 10 kenaf cultivars in the greenhouse. Five plants of each cultivar were wounded once using a sharp dissecting needle, and a colonized toothpick tip was placed on top of each wound. Control treatments consisted of five plants per cultivar each wounded and inoculated with sterile toothpick tips. All inoculation points were wrapped using Parafilm, and the experiment was conducted twice. Lesions were measured after 10 days. Mean lesion lengths for the 10 cultivars were as follows: Dowling (34.9 mm), Cuba 108 (38.6 mm), Gregg (41.1 mm), Everglades 41 (44.2 mm), SF459 (44.9 mm), Tainung 2 (45.8 mm), El Salvador (45.9 mm), Whitton (46.1 mm), Everglades 71 (46.4 mm), and Endora (54.0 mm). The Newman-Keuls multiple comparison test revealed that cvs. Dowling and Endora were significantly more resistant and more susceptible (P < 0.05), respectively, than the other cultivars. Lesions did not develop on control plants. The fungus was reisolated on MEA from all artificially inoculated plants. The pathogen is reported to cause serious losses in yield and fiber quality of kenaf (1). To our knowledge, this is the first report of S. rolfsii on kenaf in South Africa. Commercial plantings of kenaf in South Africa are expected to exceed 500 ha during the next 2 years, so its potential impact on kenaf production in this country will be significant if efficient disease control measures are not practiced. References: (1) J. M. Dempsey. Kenaf. Pages 203-304 in: Fiber Crops. The University Press of Florida, Gainesville, 1975.

13.
Plant Dis ; 86(11): 1199-1205, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30818467

RESUMO

With the increased use of Amaranthus hybridus as a leafy-vegetable crop in Africa and the recent identification of Alternaria leaf spot on this host in southern Africa, the role of this potentially damaging pathogen was investigated. The goals of this study were to test the pathogenicity of the Alternaria tenuissima group, determine how these fungi infect Amaranthus hybridus leaves, and examine the colonization pattern within host tissues. Asymptomatic leaves of Amaranthus hybridus were collected from two field sites in South Africa. Eight A. tenuissima group isolates collected from these leaves were used in inoculation experiments conducted in both greenhouse and growth chamber studies. Scanning electron microscopy revealed A. tenuissima-like conidia germinating on leaf surfaces and mycelia entering leaves only through stomata of both field-collected and artificially inoculated leaves. Unwounded, inoculated leaves had no symptoms, and light-microscopy observations of both asymptomatic field-collected and unwounded and inoculated leaves revealed hyphae in mesophyll tissue growing intercellularly with no host cell penetration or host-cell response. Seven of the eight isolates produced brown to black, circular to oval, necrotic lesions only at the wound site of injured and inoculated leaves. These results confirm that isolates of the A. tenuissima group can infect and colonize Amaranthus hybridus leaves in a manner consistent with other endophytic fungi, and suggest that these fungi can act as latent leaf pathogens when the host is altered by wounding.

14.
Plant Dis ; 86(6): 693, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30823253

RESUMO

The commercial cultivation of spineless cactus (Opuntia ficus-indica (L.) Miller) for its fruit is a relatively recent undertaking in South Africa but has been shown to possess huge export potential. To date, only one fungal pathogen, Didymosphaeria opulenta (De Not.) Sacc., has been officially reported on the genus Opuntia in South Africa, but the report is from O. stricta Haw. and not O. ficus-indica (1). The need for research on diseases of O. ficus-indica in South Africa has recently become important since local growers are increasingly reporting disease-related yield losses. Surveys conducted over a period of 3 years indicated that stems or cladodes are particularly prone to various forms of tissue necrosis, caused primarily by three fungi, which can ultimately lead to death of entire cladodes. Alternaria tenuissima was isolated from a dry superficial necrosis of the cuticle and underlying tissue as much as 3 mm deep. Symptoms include small chlorotic spots on the cuticle, which coalesce to form raised gray scabs. Fusarium sporotrichoides was isolated more commonly from dry necrotic lesions that were darker, larger, and less superficial, sometimes extending through the tissue to the opposite side of the cladode. Lasiodiplodia theobromae (teleomorph Botryosphaeria rhodina) was isolated from roundish black cankers (15 to 50 mm diameter) on cladodes and characterized by black gum exudation from the perimeter of the canker. Pycnidia were often evident on the surface of the canker. The fulfillment of Koch's postulates demonstrated that an isolate of each respective species was very aggressive in colonizing cladodes following artificial inoculations in the glasshouse. Mean lesion diameters measuring 15, 27, and 44 mm for A. tenuissima, F. sporotrichoides, and L. theobromae, respectively, were recorded 14 days after inserting wooden toothpick tips that had been colonized by the three pathogens into each of five cladodes of 18-month-old potted plants of O. ficus-indica (cv. Morado). Alternaria sp. and B. rhodina have been reported on Opuntia sp. in the United States (2), but no records of the above three fungi occurring on O. ficus-indica were found. References: (1) P. W. Crous et al. Phytopathogenic Fungi from South Africa. University of Stellenbosch, Department of Plant Pathology Press, Stellenbosch, South Africa, 2000. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.

15.
Plant Dis ; 86(6): 698, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30823270

RESUMO

Kenaf (Hibiscus cannabinus L. Malvaceae) presents a source of high-quality cellulose fibers and is being investigated in South Africa for commercial production. In March 2001, 12 5-month-old kenaf plants grown from seed in experimental plots near Bloemfontein, South Africa, displayed large, black, sunken lesions (10 to 20 cm long) at the base of the stem, and severe root rot. A study was undertaken to characterize the pathogen, and to determine the relative susceptibilities of five kenaf genotypes being considered for commercial cultivation. Isolations from diseased tissue on malt extract agar consistently yielded a fungus identified as Pythium group G (1). Four-month-old kenaf plants were artificially inoculated in the field by inserting wooden toothpick tips colonized by the pathogen approximately 25 cm above soil level into the stems of 10 plants of each of five genotypes. Inoculation points were wrapped using Parafilm. The fungus was highly virulent to all five kenaf genotypes in two experiments, with mean cambial lesion lengths of 117, 119, 120, 122, and 139 mm at 7 days after inoculation for Tainung-2, Cuba 108, SF-459, El Salvador, and Everglades 41, respectively. Lesions ranged from 44 to 164 mm, with an overall mean of 124 mm for all five genotypes. No lesions developed in control plants. Although Everglades had the longest lesions, there were no significant differences (P < 0.05) among genotypes. Koch's postulates were completed by reisolating the fungus from all inoculated plants. To our knowledge, there are no published reports of Pythium group G causing stem or root rot of kenaf. References: (1) M. W. Dick. Keys to Pythium. University of Reading Press, Reading, UK, 1990.

16.
Plant Dis ; 85(8): 923, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30823077

RESUMO

Kenaf (Hibiscus cannabinus L.) is a fast-growing, bamboo-like annual plant belonging to the Malvaceae. The stem, which ranges from 1.5 to 4 m, presents a source of high-quality cellulose fibers. The plant is being investigated in South Africa with a view to commercial production. In April 2001, at least 50% of 4- to 5-month-old kenaf plants grown from seed in trials near Rustenburg, Northwest Province, South Africa, were observed as having powdery mildew. Signs included extensive growth of white, superficial mycelium and emergent conidiophores on the abaxial leaf surface, followed by partial defoliation. On older leaves, the abaxial leaf surface was completely covered by powdery mildew, and chlorotic and necrotic patches were clearly visible on the adaxial surface. Symptoms were observed on all five planted cultivars (Everglades 41, Cuba 108, El Salvador, SF459, and Tainung 2), and no difference in disease severity was noted among cultivars. Leveillula taurica (Lév.) Arnaud (anamorph Oidiopsis taurica [Lév.] Salmon) was subsequently identified by the presence of endophytic mycelia, often branched conidiophores, and dimorphic conidia borne singly or in short chains (1). In 100 measurements of each type, pyriform conidia averaged 69 ± 5 × 18 ± 2 µm and cylindrical conidia averaged 62 ± 6 × 16 ± 2 µm. The teleomorph was not observed. The source of L. taurica for this reported outbreak is unknown, and powdery mildew was not observed in a field of mature cotton (Gossypium hirsutum L.) growing within 10 m of the kenaf plot. L. taurica was reported on kenaf in Texas in 1992 (2) and in Italy in 1995 (3). The pathogen can cause significant losses in seed yield and reduce seed quality in susceptible kenaf cultivars. Although L. taurica has been reported from Hibiscus sabdariffa in Egypt (4), to our knowledge this is the first report of the pathogen occurring on kenaf in Africa. References: (1) H. J. Boesewinkel. Bot Rev. 46:167, 1980. (2) C. G. Cook and J. L. Riggs. Plant Dis. 79:968, 1995. (3) S. Frisullo et al. Inf. Fitopatol. 45:37-41, 1995. (4) M. Khairy, et al. Phytopathol. Medit. 10:269-271, 1971.

17.
Plant Dis ; 85(9): 1032, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30823102

RESUMO

Kenaf (Hibiscus cannabinus L.) (Malvaceae) is a source of high-quality cellulose fibers and is being investigated in South Africa with a view to commercial production. In April 2001, 20 to 30% of 5-month-old kenaf plants grown from seed in experimental plots near Rustenburg, Northwest Province, South Africa, were affected by gray mold caused by Botrytis cinerea Pers.:Fr. Infected plants displayed brown necrotic areas that girdled the stem, resulting in wilting and lodging in at least 50% of observed cases. Symptoms included extensive growth of mycelia and gray conidia on stem lesions. Microscopic examination revealed hyaline, one-celled conidia and conidiophores conforming to the description of B. cinerea. Plating of diseased stem tissue on malt extract agar (MEA) consistently yielded B. cinerea. Koch's postulates were satisfied by applying toothpick tips (5 mm) colonized by B. cinerea on MEA to the stems of 10 120-day-old greenhouse-grown plants of each of five kenaf cultivars. A colonized toothpick tip was placed on the stem of each of five plants per cultivar at a point ≍15 cm above soil level. Another five plants of each cultivar were wounded once using a sharp dissecting needle, and a colonized toothpick tip was placed on top of each wound. Corresponding control treatments consisted of five additional plants per cultivar, each wounded and mock-inoculated with sterile toothpick tips. Inoculation points were wrapped in Parafilm. The experiment was conducted twice. Developing lesions were measured after 7 days. Mean lesion lengths for the two treatments, nonwounded and wounded, on the five cultivars were, respectively: 32.4 and 35.2 mm for Everglades 41; 14.9 and 53.8 mm for Cuba 108; 39.5 and 55.8 mm for El Salvador; 19.0 and 44.3 mm for SF459; and 12.4 and 43.9 mm for Tainung 2. The Newman-Keuls multiple comparison test revealed no significant difference (P < 0.05) in means among cultivars for the wounded treatment. For the nonwounded treatment, Everglades 41 and El Salvador were significantly more susceptible (P < 0.05) than the three remaining cultivars. No lesions developed on control treatments. The fungus was reisolated on MEA from all artificially inoculated plants. The pathogen is reported to cause serious losses in yield and fiber quality of kenaf in Spain (1). This is the first report of B. cinerea on kenaf in South Africa, and its potential impact on kenaf production in this country should be taken seriously. Reference: (1) A. De Cal and P. Melgarejo. Plant Dis. 76:539, 1992.

18.
Plant Dis ; 85(10): 1076-1080, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30823279

RESUMO

Thirty isolates of Fusarium oxysporum were recovered from six substrates: (i) tap roots of Amaranthus hybridus showing symptoms of root rot, (ii) side roots of A. hybridus showing symptoms of root rot, (iii) soil surrounding plants of A. hybridus, (iv) pigweed weevils (Hypolixus haerens) that feed on A. hybridus, (v) rhizosphere of maize plants growing adjacent to a field of amaranth, and (vi) rhizosphere of dry bean plants growing adjacent to a field of amaranth. The isolates were characterized by means of pathogenicity tests, isozyme analysis, and vegetative compatibility group (VCG) tests. In the pathogenicity tests, toothpick tips were infested with F. oxysporum and inserted into amaranth stems. All 30 isolates were pathogenic on A. hybridus, with significant differences in pathogenicity based on lesion length measured 4 weeks after inoculation. The isolates were grouped into nine VCGs by complementation tests using nitrate nonutilizing mutants. Self-incompatibility was not observed for any of the isolates. The most common VCG was VCG1, which comprised 20 of the 30 isolates tested. The second most common group was VCG3, which included three isolates, while the remaining seven VCGs each consisted of a single isolate. The results indicate that the population of the amaranth root rot pathogen examined in this study is relatively homogeneous. Results of the isozyme analysis supported the results of VCG tests. Three major groups were delineated within the 30 isolates of F. oxysporum following cluster analysis of electrophoretic phenotypic values for seven isozymes (EST, IDH, G6PDH, ACP, PEP1, PEP2, and PEP3) tested. No relationship was found between isozyme phenotype and the substrate from which the isolates were recovered.

19.
Plant Dis ; 84(12): 1344, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30831885

RESUMO

Pigeonpea (Cajanus cajan [L.] Mills.) is an important legume with potential as a dryland crop with multiple uses in the semi-arid areas of South Africa. Approximately 150 tons of dry, split seeds are imported monthly to meet the needs of South Africa. In May 2000, field trials and farmer's plots with plant ages varying from 1 to 3 years old were visited in Mpumalanga and Kwazulu-Natal to assess problems associated with pigeonpea cultivation. Rust was prevalent on more than 80% of plants on young and old leaves at all sites but was most severe at sites in Mpumalanga, where severe rust was observed on all 17 ICRISAT varieties evaluated. Leaf lesions began as chlorotic flecks that expanded and developed into necrotic spots with several orange red to brown uredinia present mostly on the abaxial sides of leaves. Urediospores were 1-celled and initially hyaline, turning dark orange, minutely echinulate, spherical with 2 to 4 circular germpores and measured 20-27 × 17 to 21µ. No telia were found and all morphological characteristics therefore correspond with the CMI description of Uredo cajani Syd. (1). In Africa, pigeonpea rust has been reported from Kenya, Nigeria, Sierra Leone, Tanzania, and Uganda. In South Africa, rust, described as Uromyces dolicholi Arthur (2), has only once been reported on pigeonpea. In the United States, U. dolicholi has also once been reported on pigeonpea (3). However, since U. dolicholi, unlike U. cajani, produces telia and occurs only on Rhyncosia spp. (4), these reports can be considered incorrect. This is therefore the first report of U. cajani on pigeonpea in South Africa. References: (1) K. H. Anahosur and J. M. Waller. 1978. No. 590: Descriptions of Plant Pathogenic Fungi and Bacteria. Commonw. Mycol. Inst., Kew, England. (2) E. M. Doidge. Bothalia 5:1-1094, 1950. (3) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN, 1989. (4) A. Sivanesan. 1970. No. 269: Descriptions of Plant Pathogenic Fungi and Bacteria. Commonw. Mycol. Inst., Kew, England.

20.
Plant Dis ; 84(1): 101, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30841204

RESUMO

Amaranthus hybridus has been identified as an important alternative vegetable crop with potential for increased commercial production in South Africa (1). In summer 1999, severe losses occurred in a large plot of 2-month-old A. hybridus plants on an experimental farm near Bloemfontein, South Africa. More than 90% of the plants were severely stunted, with chlorotic foliage that was wilted in most cases. Root rot was present in all symptomatic plants and was clearly visible as an amber to brown discoloration of tap and secondary roots; in severe cases, white mycelium was clearly visible on diseased root tissue. Isolations from symptomatic roots were made on potato dextrose agar (PDA) amended with streptomycin sulfate. Isolates (N = 121) were recovered from diseased roots (n = 89). The two most frequently isolated fungi were transferred to carnation leaf agar and identified as Fusarium oxysporum (n = 90, 74%) and F. sambucinum (n = 29, 24%). Pathogenicity tests with one isolate of each species were performed in the greenhouse on 1-month-old potted A. hybridus seedlings (10 plants per treatment). A single hyphal tip of each isolate was transferred to PDA and incubated at 25°C for 7 days in the dark. Five 4-mm-diameter mycelial plugs were taken and placed directly on the taproot of each plant, halfway along the length and ≈30 mm below the soil surface. Control plants were treated with uncolonized PDA plugs. Seedlings inoculated with either fungus exhibited wilting within 7 days; stunting, chlorosis (pale green to yellow), and root necrosis after 2 weeks; and mortality after 4 weeks. Inoculated plants were removed from pots after 3 weeks, roots were washed free of potting soil, and necrotic lesion length was measured. Necrosis and discoloration of root tissue were similar to those observed in field plants. The mean length of tissue necrosis induced by the fungi was 22.5 and 34.8 mm for F. oxysporum and F. sambucinum, respectively. F. sambucinum, thus, was more pathogenic than F. oxysporum despite being recovered significantly less often from field plants. Control plants inoculated with noninfested PDA plugs remained healthy. The presence of both pathogens was confirmed by reisolation from artificially inoculated taproots of all plants. No Fusarium spp. were recovered from the 10 control treatments. F. oxysporum has been reported on diseased red root pigweed (A. retroflexus) in the United States (2), but this is the first report of both F. oxysporum and F. sambucinum as causal agents of root rot in A. hybridus. These pathogens, therefore, must be considered a potential threat to commercial production of A. hybridus in South Africa and elsewhere. References: (1) W. J. Swart et al. S. Afr. J. Sci. 93:22, 1997. (2) R. M. Harveson and C. M. Rush. Plant Dis. 81:85, 1997.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...