Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 33(2): 534-540, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28188692

RESUMO

Chinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc-fusion proteins. Creating and characterizing the stable CHO clonally-derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious process. Therefore, CHO pools have increasingly been used to rapidly produce protein to support and enable preclinical drug development. We recently described the generation of CHO pools yielding mAb titers as high as 7.6 g/L in a 16 day bioprocess using piggyBac transposon-mediated gene integration. In this study, we wanted to understand why the piggyBac pool titers were significantly higher (2-10 fold) than the control CHO pools. Higher titers were the result of a combination of increased average gene copy number, significantly higher messenger RNA levels and the homogeneity (i.e. less diverse population distribution) of the piggyBac pools, relative to the control pools. In order to validate the use of piggyBac pools to support preclinical drug development, we then performed an in-depth product quality analysis of purified protein. The product quality of protein obtained from the piggyBac pools was very similar to the product quality profile of protein obtained from the control pools. Finally, we demonstrated the scalability of these pools from shake flasks to 36L bioreactors. Overall, these results suggest that gram quantities of therapeutic protein can be rapidly obtained from piggyBac CHO pools without significantly changing product quality attributes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:534-540, 2017.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Proliferação de Células/fisiologia , Elementos de DNA Transponíveis/genética , Engenharia de Proteínas/métodos , Animais , Anticorpos Monoclonais/genética , Técnicas de Cultura Celular por Lotes/métodos , Células CHO , Cricetulus , Projetos Piloto , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima
2.
Artigo em Inglês | MEDLINE | ID: mdl-25462105

RESUMO

During the purification development of a bispecific antibody, cation-exchange chromatography was screened for its ability to separate a prominently expressed (>12%) mis-formed disulfide bond variant, termed MAb-diabody, and aggregate from the product of interest. The influence of pH, product load (g of product per liter of resin) and linear velocity on the separations were evaluated for the strong cation-exchange resins SP Sepharose HP and POROS(®) HS50. Cation-exchange chromatography is commonly operated distant to the isoelectric point of a molecule, generally leading to acidic conditions for antibody purification. However, the results herein demonstrated improved removal of MAb-diabody with increasing pH, resulting in reduction of MAb-diabody content greater than 12-fold when operating near the alkaline pI of the product. This approach was successful over a range of linear velocities and g/L of resin loading. Aggregate removal was less affected by pH and was effectively reduced from 10.9% to less than 3% for each condition. Furthermore, this method was successfully scaled to a 60 cm diameter column using SP Sepharose HP resin.


Assuntos
Anticorpos Biespecíficos/isolamento & purificação , Resinas de Troca de Cátion/química , Cromatografia por Troca Iônica/métodos , Agregados Proteicos , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Células CHO , Cricetulus , Dissulfetos/química , Dissulfetos/isolamento & purificação , Expressão Gênica , Concentração de Íons de Hidrogênio , Cloreto de Sódio/química
3.
Eukaryot Cell ; 3(4): 932-43, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15302826

RESUMO

The Pkc1-mediated cell wall integrity-signaling pathway is highly conserved in fungi and is essential for fungal growth. We thus explored the potential of targeting the Pkc1 protein kinase for developing broad-spectrum fungicidal antifungal drugs through a Candida albicans Pkc1-based high-throughput screening. We discovered that cercosporamide, a broad-spectrum natural antifungal compound, but previously with an unknown mode of action, is actually a selective and highly potent fungal Pkc1 kinase inhibitor. This finding provides a molecular explanation for previous observations in which Saccharomyces cerevisiae cell wall mutants were found to be highly sensitive to cercosporamide. Indeed, S. cerevisiae mutant cells with reduced Pkc1 kinase activity become hypersensitive to cercosporamide, and this sensitivity can be suppressed under high-osmotic growth conditions. Together, the results demonstrate that cercosporamide acts selectively on Pkc1 kinase and, thus, they provide a molecular mechanism for its antifungal activity. Furthermore, cercosporamide and a beta-1,3-glucan synthase inhibitor echinocandin analog, by targeting two different key components of the cell wall biosynthesis pathway, are highly synergistic in their antifungal activities. The synergistic antifungal activity between Pkc1 kinase and beta-1,3-glucan synthase inhibitors points to a potential highly effective combination therapy to treat fungal infections.


Assuntos
Antifúngicos/metabolismo , Benzofuranos/metabolismo , Bioensaio/métodos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/metabolismo , Anfotericina B/metabolismo , Anfotericina B/farmacologia , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Sinergismo Farmacológico , Ativação Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Testes de Sensibilidade Microbiana/métodos , Estrutura Molecular , Fosfatidilserinas/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , beta-Glucanas/metabolismo
4.
J Biol Chem ; 279(35): 36250-8, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15173160

RESUMO

Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp. as inhibitors of SPase I. Detailed spectroscopic analyses, including MS and NMR, revealed that these lipoglycopeptides share a common 14-membered cyclic peptide core, an acyclic tripeptide chain, and a deoxy-alpha-mannose sugar, but differ in the degree of oxidation of the N-methylphenylglycine residue and the length and branching of the fatty acyl chain. Biochemical analysis demonstrated that these peptides are potent and competitive inhibitors of SPase I with K(i) 50 to 158 nm. In addition, they showed modest antibacterial activity against a panel of pathogenic Gram-positive and Gram-negative bacteria with minimal inhibitory concentration of 8-64 microm against Streptococcus pneumonniae and 4-8 microm against Escherichia coli. Notably, they mechanistically blocked the protein secretion in whole cells as demonstrated by inhibiting beta-lactamase release from Staphylococcus aureus. Taken together, the present discovery of a family of novel lipoglycopeptides as potent inhibitors of bacterial SPase I may lead to the development of a novel class of broad-spectrum antibiotics.


Assuntos
Glicopeptídeos/farmacologia , Proteínas de Membrana/química , Serina Endopeptidases/química , Ligação Competitiva , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Escherichia coli/metabolismo , Fermentação , Glicina/química , Glicopeptídeos/química , Bactérias Gram-Negativas/metabolismo , Concentração Inibidora 50 , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Químicos , Peptídeos/química , Sinais Direcionadores de Proteínas , Prótons , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/metabolismo , Streptomyces/metabolismo , Fatores de Tempo , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...