Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 743: 140420, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758808

RESUMO

The position of tidal wetlands at the land-sea interface makes them especially vulnerable to the effects of nutrient discharges and sea level rise (SLR). Experimental studies of coastal wetland nutrient additions report conflicting results among and within habitats, highlighting the importance of site-specific factors, and how spatial and temporal scaling modulates responses. This suite of influences as SLR accelerates creates a "Gordian Knot" that may compromise coastal habitat integrity. We present eight testable hypotheses here to loosen this knot by identifying critical modulators about nutrient form, soil type and porosity, physiochemical gradients, and eco-evolutionary responses that may control the impacts of nutrient enrichment on coastal wetland sustainability: (1) the delivery and form of the nutrient shapes the ecosystem response; (2) soil type mediates the effects of nutrient enrichment on marshes; (3) belowground responses cannot be solely explained by phenotypic responses; (4) shifting zones of redox and salinity gradients modulate nutrient enrichment impacts; (5) eco-evolutionary processes can drive responses to nutrient availability; (6) nutrient enrichment leads to multiple changed ecosystem states; (7) biogeography trumps a plant's plastic responses to nutrient enrichment; and, (8) nutrient-enhanced wetlands are more susceptible to additional (and anticipated) anthropogenic changes. They provide a framework to investigate and integrate the urgently needed research to understand how excess nutrients threaten the sustainability of coastal wetlands, and wetlands in general. While there is no single 'right way' to test these hypotheses, including a combination of complex and simple, highly-replicated experiments is essential.

2.
PLoS One ; 12(9): e0183431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902904

RESUMO

Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental/normas , Água do Mar , Áreas Alagadas , Alabama , Monitoramento Ambiental/métodos , Florida , Golfo do México , Serviços de Informação/organização & administração , Serviços de Informação/normas , Louisiana , Mississippi , Projetos de Pesquisa/normas , Estudos de Amostragem , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA