Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 60(3): 229-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25348627

RESUMO

UNLABELLED: An attempt was made to produce bioethanol using optimized fermentation parameters and mutationally improved strain of Candida albicans. The mutant strain OMC3E6 obtained by UV irradiation followed by ethidium bromide successive mutations showed 2.6 times more glucoamylase secretion and 1.5 times more bioethanol production via direct conversion of starch. Enhanced hydrolysis of insoluble starch (72%) and potato starch (70%) was achieved with glucoamylase enzyme preparation from mutant C. albicans. In fermentation medium, the use of maltose, corn steep liquor, NaH2 PO4 , NaCl + MgSO4 and Triton X-100 has increased the glucoamylase production by the microbe. Under optimized conditions, C. albicans eventually produced 437 g ethanol kg(-1) potatoes. Earlier reports mentioned the use of thrice the quantity of starch as reported by us followed by more fermentation period (3-4 days) and demanded pretreatment of starch sources with alpha-amylase as well. Here, we simplified these three steps and obtained 73% conversion of insoluble starch into ethanol via direct conversion method in a period of 2 days without the involvement of cell immobilizations or enzyme pretreatment steps. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to fast depletion of fossil fuels in the modern world, bioethanol usage as an alternate energy source is the need of the hour. For the first time, we report bioethanol production by Candida albicans via direct conversion of starchy biomass into ethanol along with enhanced starch-hydrolysing capacity and ethanol conversion ratio. So far, C. albicans was dealt in the field of clinical pathology, but here we successfully employed this organism to produce bioethanol from starchy agri-substrates. Optimizing fermentation parameters and improving the microbial strains through successive mutagenesis can improve the end product yield.


Assuntos
Biocombustíveis , Candida albicans/enzimologia , Amido/metabolismo , alfa-Amilases/genética , Candida albicans/genética , Células Imobilizadas , Etanol/metabolismo , Fermentação/fisiologia , Hidrólise , Maltose/metabolismo , Mutação , Solanum tuberosum/metabolismo , Zea mays/metabolismo , alfa-Amilases/metabolismo
2.
Physiol Mol Biol Plants ; 15(4): 287-302, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23572939

RESUMO

Great millet (Sorghum bicolor (L.) Moench) is cultivated across the world for food and fodder. It is typically grown in semiarid regions that are not suitable for cultivation of other major cereals. Sexual incompatibility and shortage of available genes in germplasm to combat biotic and abiotic stresses resulted in marginalized yields of this crop. Genetic modification of sorghum with agronomically useful genes can address this problem. Here, we tried to review and summarize the key aspects of sorghum transformation work being carried out so far by various research groups across the world. The approaches used and the obstacles in generating transgenic sorghum are also pointed out and discussed.

3.
Plant Cell Rep ; 24(9): 513-22, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16172896

RESUMO

Transgenic sorghum plants expressing a synthetic cry1Ac gene from Bacillus thuringiensis (Bt) under the control of a wound-inducible promoter from the maize protease inhibitor gene (mpiC1) were produced via particle bombardment of shoot apices. Plants were regenerated from the transformed shoot apices via direct somatic embryogenesis with an intermittent three-step selection strategy using the herbicide Basta. Molecular characterisation based on polymerase chain reaction and Southern blot analysis revealed multiple insertions of the cry1Ac gene in five plants from three independent transformation events. Inheritance and expression of the Bt gene was confirmed in T(1) plants. Enzyme-linked immunosorbant assay indicated that Cry1Ac protein accumulated at levels of 1-8 ng per gram of fresh tissue in leaves that were mechanically wounded. Transgenic sorghum plants were evaluated for resistance against the spotted stem borer (Chilo partellus Swinhoe) in insect bioassays, which indicated partial resistance to damage by the neonate larvae of the spotted stem borer. Reduction in leaf damage 5 days after infestation was up to 60%; larval mortality was 40%, with the surviving larvae showing a 36% reduction in weight over those fed on control plants. Despite the low levels of expression of Bt delta-endotoxin under the control of the wound-inducible promoter, the transgenic plants showed partial tolerance against first instar larvae of the spotted stem borer.


Assuntos
Mariposas/fisiologia , Plantas Geneticamente Modificadas/parasitologia , Sorghum/parasitologia , Animais , Sequência de Bases , Primers do DNA , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , Sorghum/genética , Transformação Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...