Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autism Res ; 17(6): 1126-1139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38770780

RESUMO

Structural and functional differences in the hippocampus have been related to the episodic memory and social impairments observed in autism spectrum disorder (ASD). In neurotypical individuals, hippocampal-cortical functional connectivity systematically varies between anterior and posterior hippocampus, with changes observed during typical development. It remains unknown whether this specialization of anterior-posterior hippocampal connectivity is disrupted in ASD, and whether age-related differences in this specialization exist in ASD. We examined connectivity of the anterior and posterior hippocampus in an ASD (N = 139) and non-autistic comparison group (N = 133) aged 5-21 using resting-state functional magnetic resonance imaging (MRI) data from the Healthy Brain Network (HBN). Consistent with previous results, we observed lower connectivity between the whole hippocampus and medial prefrontal cortex in ASD. Moreover, preferential connectivity of the posterior relative to the anterior hippocampus for memory-sensitive regions in posterior parietal cortex was reduced in ASD, demonstrating a weaker anterior-posterior specialization of hippocampal-cortical connectivity. Finally, connectivity between the posterior hippocampus and precuneus negatively correlated with age in the ASD group but remained stable in the comparison group, suggesting an altered developmental specialization. Together, these differences in hippocampal-cortical connectivity may help us understand the neurobiological basis of the memory and social impairments found in ASD.


Assuntos
Transtorno do Espectro Autista , Hipocampo , Imageamento por Ressonância Magnética , Humanos , Hipocampo/fisiopatologia , Hipocampo/diagnóstico por imagem , Masculino , Criança , Feminino , Adolescente , Adulto Jovem , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Pré-Escolar , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
2.
Proc Biol Sci ; 281(1774): 20131835, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24258715

RESUMO

On coral reefs, herbivorous fishes consume benthic primary producers and regulate competition between fleshy algae and reef-building corals. Many of these species are also important fishery targets, yet little is known about their global status. Using a large-scale synthesis of peer-reviewed and unpublished data, we examine variability in abundance and biomass of herbivorous reef fishes and explore evidence for fishing impacts globally and within regions. We show that biomass is more than twice as high in locations not accessible to fisheries relative to fisheries-accessible locations. Although there are large biogeographic differences in total biomass, the effects of fishing are consistent in nearly all regions. We also show that exposure to fishing alters the structure of the herbivore community by disproportionately reducing biomass of large-bodied functional groups (scraper/excavators, browsers, grazer/detritivores), while increasing biomass and abundance of territorial algal-farming damselfishes (Pomacentridae). The browser functional group that consumes macroalgae and can help to prevent coral-macroalgal phase shifts appears to be most susceptible to fishing. This fishing down the herbivore guild probably alters the effectiveness of these fishes in regulating algal abundance on reefs. Finally, data from remote and unfished locations provide important baselines for setting management and conservation targets for this important group of fishes.


Assuntos
Recifes de Corais , Peixes/fisiologia , Animais , Biodiversidade , Biomassa , Conservação dos Recursos Naturais , Pesqueiros , Geografia , Herbivoria , Densidade Demográfica , Dinâmica Populacional
3.
Ecology ; 88(1): 158-69, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17489464

RESUMO

We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Niño-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.


Assuntos
Clima , Perciformes/fisiologia , Animais , Antozoários , Austrália , Ecossistema , Dinâmica Populacional , Especificidade da Espécie
5.
J Exp Mar Biol Ecol ; 251(2): 141-160, 2000 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-10960612

RESUMO

Competition for space among scleractinians by overgrowth, overtopping, extracoelenteric digestion and the use of sweeper tentacles is well recognized, but another potential mode of competitive interaction, allelopathy, is largely uninvestigated. In this study, chemical extracts from Tubastraea faulkneri Wells were tested for deleterious effects on competent larvae of 11 other species of coral belonging to seven genera of four scleractinian families. Larvae exposed to extract concentrations from 10 to 500 µg ml(-1) consistently suffered higher mortality than larvae in solvent controls. Larvae of Platygyra daedalea (Ellis and Solander) and Oxypora lacera (Verrill) were the most sensitive, experiencing high mortality even at the lowest extract concentration. The toxic compounds from T. faulkneri did not kill any conspecific larvae. The estimated concentrations of active compounds within T. faulkneri tissues were 100-5000 times higher than the experimental concentrations. Pure compounds isolated from bioactive fractions of the extract were indole alkaloids identified as aplysinopsin, 6-bromoaplysinopsin, 6-bromo-2'-de-N-methylaplysinopsin and its dimer. The first three occur in other non-zooxanthellate corals in the same family as T. faulkneri, whereas the dimer is novel. These compounds could act as allelochemicals that prevent potential competitors from recruiting in the vicinity of T. faulkneri colonies and help to pre-empt interactions with competitively dominant species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...