Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(11): 2370-2393, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584601

RESUMO

Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE: The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Resultado do Tratamento , Epigênese Genética , Mutação
2.
Proc Natl Acad Sci U S A ; 120(18): e2221175120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094128

RESUMO

Diffuse midline gliomas (DMGs) including diffuse intrinsic pontine gliomas (DIPGs) bearing lysine-to-methionine mutations in histone H3 at lysine 27 (H3K27M) are lethal childhood brain cancers. These tumors harbor a global reduction in the transcriptional repressive mark H3K27me3 accompanied by an increase in the transcriptional activation mark H3K27ac. We postulated that H3K27M mutations, in addition to altering H3K27 modifications, reprogram the master chromatin remodeling switch/sucrose nonfermentable (SWI/SNF) complex. The SWI/SNF complex can exist in two main forms termed BAF and PBAF that play central roles in neurodevelopment and cancer. Moreover, BAF antagonizes PRC2, the main enzyme catalyzing H3K27me3. We demonstrate that H3K27M gliomas show increased protein levels of the SWI/SNF complex ATPase subunits SMARCA4 and SMARCA2, and the PBAF component PBRM1. Additionally, knockdown of mutant H3K27M lowered SMARCA4 protein levels. The proteolysis targeting chimera (PROTAC) AU-15330 that simultaneously targets SMARCA4, SMARCA2, and PBRM1 for degradation exhibits cytotoxicity in H3.3K27M but not H3 wild-type cells. AU-15330 lowered chromatin accessibility measured by ATAC-Seq at nonpromoter regions and reduced global H3K27ac levels. Integrated analysis of gene expression, proteomics, and chromatin accessibility in AU-15330-treated cells demonstrated reduction in the levels of FOXO1, a key member of the forkhead family of transcription factors. Moreover, genetic or pharmacologic targeting of FOXO1 resulted in cell death in H3K27M cells. Overall, our results suggest that H3K27M up-regulates SMARCA4 levels and combined targeting of SWI/SNF ATPases in H3.3K27M can serve as a potent therapeutic strategy for these deadly childhood brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Criança , Histonas/genética , Adenosina Trifosfatases/metabolismo , Lisina/genética , Cromatina , Glioma/genética , Neoplasias Encefálicas/genética , Mutação , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
3.
Neuro Oncol ; 25(1): 54-67, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605606

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in human tumors or therapeutically targeted. METHODS: Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor growth was assessed. Patient-reported CBD dosing information was collected. RESULTS: Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is associated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, finding that a clinical trial to standardize dosing may be beneficial. CONCLUSIONS: H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcriptional program that is therapeutically targetable with CBD.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Camundongos , Encéfalo/patologia , Neoplasias Encefálicas/genética , Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular/genética , Glioma/genética , Histonas/genética , Proteína 1 Inibidora de Diferenciação/genética , Mutação , Transdução de Sinais
4.
Sci Transl Med ; 13(614): eabc0497, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613815

RESUMO

Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle­related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT­expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas.


Assuntos
Ependimoma , Histonas , Animais , Criança , Ependimoma/genética , Epigênese Genética , Epigenômica , Histonas/genética , Humanos , Redes e Vias Metabólicas , Camundongos
5.
Sci Transl Med ; 13(615): eabf7860, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644147

RESUMO

High-grade gliomas with arginine or valine substitutions of the histone H3.3 glycine-34 residue (H3.3G34R/V) carry a dismal prognosis, and current treatments, including radiotherapy and chemotherapy, are not curative. Because H3.3G34R/V mutations reprogram epigenetic modifications, we undertook a comprehensive epigenetic approach using ChIP sequencing and ChromHMM computational analysis to define therapeutic dependencies in H3.3G34R/V gliomas. Our analyses revealed a convergence of epigenetic alterations, including (i) activating epigenetic modifications on histone H3 lysine (K) residues such as H3K36 trimethylation (H3K36me3), H3K27 acetylation (H3K27ac), and H3K4 trimethylation (H3K4me3); (ii) DNA promoter hypomethylation; and (iii) redistribution of repressive histone H3K27 trimethylation (H3K27me3) to intergenic regions at the leukemia inhibitory factor (LIF) locus to drive increased LIF abundance and secretion by H3.3G34R/V cells. LIF activated signal transducer and activator of transcription 3 (STAT3) signaling in an autocrine/paracrine manner to promote survival of H3.3G34R/V glioma cells. Moreover, immunohistochemistry and single-cell RNA sequencing from H3.3G34R/V patient tumors revealed high STAT3 protein and RNA expression, respectively, in tumor cells with both inter- and intratumor heterogeneity. We targeted STAT3 using a blood-brain barrier­penetrable small-molecule inhibitor, WP1066, currently in clinical trials for adult gliomas. WP1066 treatment resulted in H3.3G34R/V tumor cell toxicity in vitro and tumor suppression in preclinical mouse models established with KNS42 cells, SJ-HGGx42-c cells, or in utero electroporation techniques. Our studies identify the LIF/STAT3 pathway as a key epigenetically driven and druggable vulnerability in H3.3G34R/V gliomas. This finding could inform development of targeted, combination therapies for these lethal brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigênese Genética , Glioma/genética , Glicina , Histonas/metabolismo , Humanos , Camundongos
6.
Cancer Cell ; 38(3): 334-349.e9, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795401

RESUMO

H3K27M diffuse intrinsic pontine gliomas (DIPGs) are fatal and lack treatments. They mainly harbor H3.3K27M mutations resulting in H3K27me3 reduction. Integrated analysis in H3.3K27M cells, tumors, and in vivo imaging in patients showed enhanced glycolysis, glutaminolysis, and tricarboxylic acid cycle metabolism with high alpha-ketoglutarate (α-KG) production. Glucose and/or glutamine-derived α-KG maintained low H3K27me3 in H3.3K27M cells, and inhibition of key enzymes in glycolysis or glutaminolysis increased H3K27me3, altered chromatin accessibility, and prolonged survival in animal models. Previous studies have shown that mutant isocitrate-dehydrogenase (mIDH)1/2 glioma cells convert α-KG to D-2-hydroxyglutarate (D-2HG) to increase H3K27me3. Here, we show that H3K27M and IDH1 mutations are mutually exclusive and experimentally synthetic lethal. Overall, we demonstrate that H3.3K27M and mIDH1 hijack a conserved and critical metabolic pathway in opposing ways to maintain their preferred epigenetic state. Consequently, interruption of this metabolic/epigenetic pathway showed potent efficacy in preclinical models, suggesting key therapeutic targets for much needed treatments.


Assuntos
Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/genética , Epigenômica/métodos , Histonas/genética , Mutação , Animais , Neoplasias do Tronco Encefálico/metabolismo , Linhagem Celular Tumoral , Glioma Pontino Intrínseco Difuso/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Transplante Heterólogo
7.
eNeurologicalSci ; 7: 49-56, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28971146

RESUMO

The prevalence of the fragile X premutation (55-200 CGG repeats) among the general population is relatively high, but there remains a lack of clear understanding of the links between molecular biomarkers and clinical outcomes. In this study we investigated the correlations between molecular measures (CGG repeat size, FMR1 mRNA, FMRP expression levels, and methylation status at the promoter region and in FREE2 site) and clinical phenotypes (anxiety, obsessive compulsive symptoms, depression and executive function deficits) in 36 adult premutation female carriers and compared to 24 normal control subjects. Premutation carriers reported higher levels of obsessive compulsive symptoms, depression, and anxiety, but demonstrated no significant deficits in global cognitive functions or executive function compared to the control group. Increased age in carriers was significantly associated with increased anxiety levels. As expected, FMR1 mRNA expression was significantly correlated with CGG repeat number. However, no significant correlations were observed between molecular (including epigenetic) measures and clinical phenotypes in this sample. Our study, albeit limited by the sample size, establishes the complexity of the mechanisms that link the FMR1 locus to the clinical phenotypes commonly observed in female carriers suggesting that other factors, including environment or additional genetic changes, may have an impact on the clinical phenotypes. However, it continues to emphasize the need for assessment and treatment of psychiatric problems in female premutation carriers.

8.
Brain Dev ; 39(6): 483-492, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28242040

RESUMO

OBJECTIVES: Several neurotransmitters involved in brain development are altered in fragile X syndrome (FXS), the most common monogenic cause of autism spectrum disorder (ASD). Serotonin plays a vital role in synaptogenesis and postnatal brain development. Deficits in serotonin synthesis and abnormal neurogenesis were shown in young children with autism, suggesting that treating within the first years of life with a selective serotonin reuptake inhibitor might be the most effective time. In this study we aimed to identify molecular biomarkers involved in the serotonergic pathway that could predict the response to sertraline treatment in young children with FXS. METHODS: Genotypes were determined for several genes involved in serotonergic pathway in 51 children with FXS, ages 24-72months. Correlations between genotypes and deviations from baseline in primary and secondary outcome measures were modeled using linear regression models. RESULTS: A significant association was observed between a BDNF polymorphism and improvements for several clinical measures, including the Clinical Global Impression scale (P=0.008) and the cognitive T score (P=0.017) in those treated with sertraline compared to those in the placebo group. Additionally, polymorphisms in the MAOA, Cytochrome P450 2C19 and 2D6, and in the 5-HTTLPR gene showed a significant correlation with some of the secondary measures included in this study. CONCLUSION: This study shows that polymorphisms of genes involved in the serotonergic pathway could play a potential role in predicting response to sertraline treatment in young children with FXS. Larger studies are warranted to confirm these initial findings.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Biomarcadores/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Sertralina/uso terapêutico , Transtorno do Espectro Autista/genética , Fator Neurotrófico Derivado do Encéfalo/sangue , Criança , Pré-Escolar , Estudos de Coortes , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Método Duplo-Cego , Feminino , Síndrome do Cromossomo X Frágil/sangue , Genótipo , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Índice de Gravidade de Doença
9.
Intractable Rare Dis Res ; 3(4): 153-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25606365

RESUMO

The CGG trinucleotide repeat within the FMR1 gene is associated with multiple clinical disorders, including fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X syndrome. Differences in the distribution and prevalence of CGG repeat length and of AGG interruption patterns have been reported among different populations and ethnicities. In this study we characterized the AGG interruption patterns within 3,065 normal CGG repeat alleles from nine world populations including Australia, Chile, United Arab Emirates, Guatemala, Indonesia, Italy, Mexico, Spain, and United States. Additionally, we compared these populations with those previously reported, and summarized the similarities and differences. We observed significant differences in AGG interruption patterns. Frequencies of longer alleles, longer uninterrupted CGG repeat segments and alleles with greater than 2 AGG interruptions varied between cohorts. The prevalence of fragile X syndrome and FMR1 associated disorders in various populations is thought to be affected by the total length of the CGG repeat and may also be influenced by the AGG distribution pattern. Thus, the results of this study may be important in considering the risk of fragile X-related conditions in various populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...