Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1023315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466691

RESUMO

In the gut microbiota, resident bacteria prevent pathogens infection by producing specific metabolites. Among bacteria belonging to phylum Bacteroidota, we have previously shown that Bacteroides fragilis or its cell-free supernatant inhibited in vitro Salmonella Heidelberg translocation. In the present study, we have analyzed this supernatant to identify bioactive molecules after extraction and subsequent fractionation using a semi-preparative reversed-phase Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS). The results indicated that only two fractions (F3 and F4) strongly inhibited S. Heidelberg translocation in a model mimicking the intestinal epithelium. The efficiency of the bioactive fractions was evaluated in BALB/c mice, and the results showed a decrease of S. Heidelberg in Peyer's patches and spleen, associated with a decrease in inflammatory cytokines and neutrophils infiltration. The reduction of the genus Alistipes in mice receiving the fractions could be related to the anti-inflammatory effects of bioactive fractions. Furthermore, these bioactive fractions did not alter the gut microbiota diversity in mice. To further characterize the compounds present in these bioactive fractions, Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) data were analyzed through molecular networking, highlighting cholic acid (CA) and deoxycholic acid. In vitro, CA had inhibitory activity against the translocation of S. Heidelberg by significantly decreasing the expression of Salmonella virulence genes such as sipA. The bioactive fractions also significantly downregulated the flagellar gene fliC, suggesting the involvement of other active molecules. This study showed the interest to characterize better the metabolites produced by B. fragilis to make them means of fighting pathogenic bacteria by targeting their virulence factor without modifying the gut microbiota.

2.
J Med Microbiol ; 71(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35511246

RESUMO

During this global pandemic of the COVID-19 disease, a lot of information has arisen in the media and online without scientific validation, and among these is the possibility that this disease could be aggravated by a secondary bacterial infection such as Prevotella, as well as the interest or not in using azithromycin, a potentially active antimicrobial agent. The aim of this study was to carry out a systematic literature review, to prove or disprove these allegations by scientific arguments. The search included Medline, PubMed, and Pubtator Central databases for English-language articles published 1999-2021. After removing duplicates, a total of final eligible studies (n=149) were selected. There were more articles showing an increase of Prevotella abundance in the presence of viral infection like that related to Human Immunodeficiency Virus (HIV), Papillomavirus (HPV), Herpesviridae and respiratory virus, highlighting differences according to methodologies and patient groups. The arguments for or against the use of azithromycin are stated in light of the results of the literature, showing the role of intercurrent factors, such as age, drug consumption, the presence of cancer or periodontal diseases. However, clinical trials are lacking to prove the direct link between the presence of Prevotella spp. and a worsening of COVID-19, mainly those using azithromycin alone in this indication.


Assuntos
COVID-19 , Coinfecção , Azitromicina/farmacologia , Humanos , Pandemias , Prevotella , SARS-CoV-2
3.
Microorganisms ; 9(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925715

RESUMO

Since December 2019, a global pandemic has been observed, caused by the emergence of a new coronavirus, SARS CoV-2. The latter is responsible for the respiratory disease, COVID-19. The infection is also characterized by renal, hepatic, and gastrointestinal dysfunctions suggesting the spread of the virus to other organs. A dysregulated immune response was also reported. To date, there is no measure to treat or prevent SARS CoV-2 infection. Additionally, as gut microbiota composition is altered in patients with COVID-19, alternative therapies using probiotics can be considered to fight SARS CoV-2 infection. This review aims at summarizing the current knowledge about next-generation probiotics (NGPs) and their benefits in viral respiratory tract infections and in COVID-19. We describe these bacteria, highlighted by studies using metagenomic approaches. In addition, these bacteria generate metabolites such as butyrate, desaminotyrosine, and secondary bile acid, suggested to prevent viral respiratory infections. Gut microbial metabolites transported via the circulation to the lungs could inhibit viral replication or improve the immune response against viruses. The use of probiotics and/or their metabolites may target either the virus itself and/or the immunologic process. However, this review showed that more studies are needed to determine the benefits of probiotics and metabolite products in COVID-19.

4.
Pak J Pharm Sci ; 33(1): 199-206, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32122849

RESUMO

Scorzonera have been confirmed to have potent bioactivity. Scorzonera mackmeliana (Asteraceae), the endemic plant to Lebanon, has not yet been investigated. In the present study, we assessed the antibacterial activity of S. mackmeliana extracts against referenced bacterial strains. Extracts from different parts of the plant were evaluated against Staphylococcus, Enterococcus, Escherichia and Pseudomonas species. Phytochemical screening was done by standard biochemical tests and minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and minimal biofilm eradication concentration (MBEC) were determined by micro dilution method. The extracts possessed mainly alkaloids, phenols, flavonoids and coumarins. Gram-negative bacteria were most sensitive, whose MICs ranged between 48.98 and 341.85 mg/ml. Water stems extract, rich in phenols, was the most active with an MIC of 48.98 mg/ml. MBC was only recorded for water flowers extract, rich in resins, against P. aeruginosa and ethanolic roots extract, rich in terpenoids, against S. epidermidis with values of 160.85 mg/ml and 284.35 mg/ml, respectively. Furthermore, antibiofilm activity showed that the lowest MBEC was 0.1 mg/ml for water stems extract with an eradication ability of 91% (p <0.0001). Hence, this study suggests S. mackmeliana as a promising candidate for future investigations to elucidate the major bioactive compound behind the antibacterial and antibiofilm effect.


Assuntos
Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana/estatística & dados numéricos , Extratos Vegetais/farmacologia , Scorzonera/química , Antibacterianos/química , Antibacterianos/farmacologia , Flores/química , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Plantas/química
5.
Fitoterapia ; 137: 104274, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31344394

RESUMO

We have previously demonstrated that out of the butyrolactones series synthesized based on the natural lichen metabolite lichesterinic acid, compound (B-13) was the most effective against oral bacteria. However, its antibacterial mechanism is still unknown. In this study, we have investigated its bacterial localization by synthesizing a fluorescently labeled B-13 with NBD while maintaining its antibacterial activity. We showed that this compound binds to Streptococcus gordonii cell surface, as demonstrated by HPLC analysis. By adhering to cell surface, B-13 induced cell wall disruption leading to the release of bacterial constituents and consequently, the death of S. gordonii, a Gram-positive bacterium. A Gram-negative counterpart, Porphyromanas gingivalis, showed also cracked and ruptured cells in the presence of B-13. Besides, we also demonstrated that the analog of B-13, B-12, has also induced disruption of P. gingivalis and S. gordonii. This study revealed that butyrolactones can be considered as potent antibacterial compounds against oral pathogens causing medical complications.


Assuntos
Antibacterianos/farmacologia , Lactonas/farmacologia , Líquens/química , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular
6.
Fitoterapia ; 121: 164-169, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28736072

RESUMO

The oral bacteria not only infect the mouth and reside there, but also travel through the blood and reach distant body organs. If left untreated, the dental biofilm that can cause destructive inflammation in the oral cavity may result in serious medical complications. In dental biofilm, Streptococcus gordonii, a primary oral colonizer, constitutes the platform on which late pathogenic colonizers like Porphyromonas gingivalis, the causative agent of periodontal diseases, will bind. The aim of this study was to determine the antibacterial activity of eleven natural lichen compounds belonging to different chemical families and spanning from linear into cyclic and aromatic structures to uncover new antibiotics which can fight against the oral bacteria. The compounds were screened by broth microdilution assay. Three compounds were shown to have promising antibacterial activities where the depsidone core with certain functional groups constituted the best compound, psoromic acid, with the lowest MICs=11.72 and 5.86µg/mL against S. gordonii and P. gingivalis, respectively. The compounds screened had promising antibacterial activity which might be attributed to some important functional groups as discussed in our study. The best compounds did not induce the death of gingival epithelial carcinoma cells (Ca9-22). These results introduce new compounds having potent antibacterial activities against oral pathogens causing serious medical complications.


Assuntos
Antibacterianos/química , Líquens/química , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Boca/microbiologia , Doenças Periodontais/microbiologia
7.
J Intercult Ethnopharmacol ; 6(1): 50-57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163960

RESUMO

AIM: In a search for finding novel therapeutic agents, extracts from an endemic Lebanese plant, Astragalus angulosus, were evaluated for their potential in-vitro antibacterial and antibiofilm activities against three Gram-positive bacterial strains; Staphylococcus epidermidis (CIP444), Staphylococcus aureus (ATCC25923), and Enterococcus faecalis (ATCC29212); in addition to two Gram-negative strains, Escherichia coli (ATCC35218) and Pseudomonas aeruginosa (ATCC27853). MATERIALS AND METHODS: The plant was collected in April of 2013 and divided into several different portions, then its extracts were obtained by maceration using two different solvents. Extract analysis followed directly where microtiter broth dilution method was employed to assess antibacterial activity, while antibiofilm potential was tested using colorimetric method. RESULTS: Whole plant ethanolic extract showed the highest bacteriostatic effect at a concentration of 12.78 mg/ml and also was the most versatile exerting its effect against 3 different strains. Other extracts also exhibited an effect but at higher concentrations and each against a single strain. Regarding antibiofilm activity, the majority of the extracts were able to eradicate >50% of S. epidermidis preformed biofilm, where the highest activity was obtained with flower fraction extracted in water, achieving 67.7% biofilm eradication at 0.2 mg/ml. CONCLUSIONS: This plant possesses a promising potential in regard to eradicating bacteria and their biofilms and it is the first contributing step of establishing a library for the endemic Lebanese plants in this domain.

8.
Bioorg Med Chem ; 24(22): 5823-5833, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27687969

RESUMO

Novel butyrolactone analogues were designed and synthesized based on the known lichen antibacterial compounds, lichesterinic acids (B-10 and B-11), by substituting different functional groups on the butyrolactone ring trying to enhance its activity. All synthesized butyrolactone analogues were evaluated for their in vitro antibacterial activity against Streptococcus gordonii. Among the derivatives, B-12 and B-13 had the lowest MIC of 9.38µg/mL where they have shown to be stronger bactericidals, by 2-3 times, than the reference antibiotic, doxycycline. These two compounds were then checked for their cytotoxicity against human gingival epithelial cell lines, Ca9-22, and macrophages, THP-1, by MTT and LDH assays which confirmed their safety against the tested cell lines. A preliminary study of the structure-activity relationships unveiled that the functional groups at the C4 position had an important influence on the antibacterial activity. An optimum length of the alkyl chain at the C5 position registered the best antibacterial inhibitory activity however as its length increased the bactericidal effect increased as well. This efficiency was attained by a carboxyl group substitution at the C4 position indicating the important dual role contributed by these two substituents which might be involved in their mechanism of action.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Desenho de Fármacos , Lactonas/farmacologia , Streptococcus gordonii/efeitos dos fármacos , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lactonas/síntese química , Lactonas/química , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...