Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 500-516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745584

RESUMO

The electron-induced decomposition of Fe(CO)4MA (MA = methyl acrylate), which is a potential new precursor for focused electron beam-induced deposition (FEBID), was investigated by surface science experiments under UHV conditions. Auger electron spectroscopy was used to monitor deposit formation. The comparison between Fe(CO)4MA and Fe(CO)5 revealed the effect of the modified ligand architecture on the deposit formation in electron irradiation experiments that mimic FEBID and cryo-FEBID processes. Electron-stimulated desorption and post-irradiation thermal desorption spectrometry were used to obtain insight into the fate of the ligands upon electron irradiation. As a key finding, the deposits obtained from Fe(CO)4MA and Fe(CO)5 were surprisingly similar, and the relative amount of carbon in deposits prepared from Fe(CO)4MA was considerably less than the amount of carbon in the MA ligand. This demonstrates that electron irradiation efficiently cleaves the neutral MA ligand from the precursor. In addition to deposit formation by electron irradiation, the thermal decomposition of Fe(CO)4MA and Fe(CO)5 on an Fe seed layer prepared by EBID was compared. While Fe(CO)5 sustains autocatalytic growth of the deposit, the MA ligand hinders the thermal decomposition in the case of Fe(CO)4MA. The heteroleptic precursor Fe(CO)4MA, thus, offers the possibility to suppress contributions of thermal reactions, which can compromise control over the deposit shape and size in FEBID processes.

2.
Phys Chem Chem Phys ; 26(3): 2140-2152, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131607

RESUMO

The properties of carbonaceous materials with respect to various applications are enhanced by incorporation of nitrogen-containing moieties like, for instance, amino groups. Therefore, processes that allow the introduction of such functional groups into hydrocarbon compounds are of utmost interest. Previous studies have demonstrated that hydroamination reactions which couple amines to unsaturated sites within hydrocarbon molecules do not only proceed in the presence of suitably tailored catalysts but can also be induced and controlled by electron irradiation. However, studies on electron-induced hydroaminations so far were guided by the hypothesis that unsaturated hydrocarbons are required for the reaction while the reaction would be much less efficient in the case of saturated hydrocarbons. The present work evaluates the validity of this hypothesis by post-irradiation thermal desorption experiments that monitor the electron energy-dependent yield of ethylamine after electron irradiation of mixed C2H4:NH3 and C2H6:NH3 ices with the same composition and thickness. The results reveal that, in contrast to the initial assumption, ethylamine is formed with similar efficiency in both mixed ices. From the dependence of the product yields on the electron energy, we conclude that the reaction in both cases is predominantly driven by electron ionization of NH3. Ethylamine is formed via alternative reaction mechanisms by which the resulting NH2˙ radicals add to C2H4 and C2H6, respectively. The similar efficiency of amine formation in unsaturated and saturated hydrocarbons demonstrates that electron irradiation in the presence of NH3 is a more versatile tool for introducing nitrogen into carbonaceous materials than previously anticipated.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558308

RESUMO

Focused Electron Beam Induced Deposition (FEBID) is a unique tool to produce nanoscale materials. The resulting deposits can be used, for instance, as humidity or strain sensors. The humidity sensing concept relies on the fact that FEBID using organometallic precursors often yields deposits which consist of metal nanoparticles embedded in a carbonaceous matrix. The electrical conductivity of such materials is altered in the presence of polar molecules such as water. Herein, we provide evidence that the interaction with water can be enhanced by incorporating nitrogen in the deposit through post-deposition electron irradiation in presence of ammonia (NH3). This opens the perspective to improve and tune the properties of humidity sensors fabricated by FEBID. As a proof-of-concept experiment, we have prepared carbonaceous deposits by electron irradiation of adsorbed layers of three different precursors, namely, the aliphatic hydrocarbon n-pentane, a simple alkene (2-methyl-2-butene), and the potential Ru FEBID precursor bis(ethylcyclopentadienyl)ruthenium(II). In a subsequent processing step, we incorporated C-N bonds in the deposit by electron irradiation of adsorbed NH3. To test the resulting material with respect to its potential humidity sensing capabilities, we condensed sub-monolayer quantities of water (H2O) on the deposit and evaluated their thermal desorption behavior. The results confirm that the desorption temperature of H2O decisively depends on the degree of N incorporation into the carbonaceous residue which, in turn, depends on the chemical nature of the precursor used for deposition of the carbonaceous layer. We thus anticipate that the sensitivity of a FEBID-based humidity sensor can be tuned by a precisely timed post-deposition electron and NH3 processing step.

4.
Nanomaterials (Basel) ; 12(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630909

RESUMO

Focused electron beam induced deposition (FEBID) is a versatile tool to produce nanostructures through electron-induced decomposition of metal-containing precursor molecules. However, the metal content of the resulting materials is often low. Using different Ag(I) complexes, this study shows that the precursor performance depends critically on the molecular structure. This includes Ag(I) 2,2-dimethylbutanoate, which yields high Ag contents in FEBID, as well as similar aliphatic Ag(I) carboxylates, aromatic Ag(I) benzoate, and the acetylide Ag(I) 3,3-dimethylbutynyl. The compounds were sublimated on inert surfaces and their electron-induced decomposition was monitored by electron-stimulated desorption (ESD) experiments in ultrahigh vacuum and by reflection-absorption infrared spectroscopy (RAIRS). The results reveal that Ag(I) carboxylates with aliphatic side chains are particularly favourable for FEBID. Following electron impact ionization, they fragment by loss of volatile CO2. The remaining alkyl radical converts to a stable and equally volatile alkene. The lower decomposition efficiency of Ag(I) benzoate and Ag(I) 3,3-dimethylbutynyl is explained by calculated average local ionization energies (ALIE) which reveal that ionization from the unsaturated carbon units competes with ionization from the coordinate bond to Ag. This can stabilise the ionized complex with respect to fragmentation. This insight provides guidance with respect to the design of novel FEBID precursors.

5.
Phys Chem Chem Phys ; 23(31): 16646-16657, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34323899

RESUMO

The electron-induced chemistry of a resist material for extreme ultraviolet lithography (EUVL) consisting of Zn oxoclusters with methacrylate (MA) and trifluoroacetate (TFA) ligands (Zn(MA)(TFA)) has been studied. Electron energies of 80 eV and 20 eV mimic the effect of photoelectrons released by the absorption of EUV photons and low-energy secondary electrons (LESEs) produced by those photoelectrons. The chemical conversion of the resist is studied by mass spectrometry to monitor the volatile species that desorb during electron irradiation, combined with reflection absorption infrared spectra (RAIRS) measured before and after irradiation. The observed reactions are closely related to those initiated upon EUV absorption. Also, the conversion of the Zn(MA)(TFA) resist layer that is required in EUVL is achieved by a similar energy input upon electron irradiation. The dominant component of the desorbing gas is CO2, but CO detection also suggests Zn oxide formation during electron irradiation. In contrast, species deriving from the ligand side chains predominantly remain within the resist layer. RAIRS gives direct evidence that, during electron irradiation, C[double bond, length as m-dash]C bonds of the MA ligands are more rapidly consumed than the carboxylate groups. This supports that chain reactions occur and contribute to the solubility switch in the resist in EUVL. Remarkably, 20 eV electrons still evolve roughly 50% of the amount of the gas that is observed at 80 eV for the same electron dose. The present results thus provide complementary and new insight to the EUV-induced chemistry in the Zn(MA)(TFA) resist and point towards the important contribution of low-energy electrons therein.

6.
Phys Chem Chem Phys ; 23(20): 11649-11662, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978008

RESUMO

The formation of methyl formate (CH3OCHO) upon electron irradiation of mixed ices of carbon monoxide (CO) and methanol (CH3OH) has been monitored by post-irradiation thermal desorption spectrometry (TDS). The energy dependence of the product yields obtained with electron energies between 3 and 18 eV was studied. These energies are characteristic of secondary electrons that are released in vast numbers under the effect of ionizing radiation. Our results reveal that the reactions leading to methyl formate are initiated by a number of different electron-molecule interactions that produce CH3O˙ radicals. Dissociative electron attachment (DEA) to CH3OH around 5.5 eV and neutral dissociation (ND) above 7 eV release CH3O˙ radicals that can add to CO to initiate a reaction sequence leading to formation of methyl formate. Around 10 eV, DEA to CO yields an oxygen radical anion that reacts with CH3OH to also produce CH3O˙ radicals. Alternatively, CH3OH can also release H˙ radicals upon both DEA and ND. These can also add to CO to form HCO˙ radicals as an intermediate to formaldehyde (H2CO), which was also investigated to unravel the reaction mechanisms leading to formation of methyl formate. The recombination of HCO˙ and CH3O˙ as minority radical species is considered as an alternative but less probable pathway to the formation of methyl formate. To the best of our knowledge, this is the first study showing considerable contributions of DEA to the formation of methyl formate in CH3OH containing ices. Thus, our study has important implications for current astrochemical models.

7.
J Phys Chem A ; 125(9): 1919-1926, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651608

RESUMO

Focused electron beam deposition often requires the use of purification techniques to increase the metal content of the respective deposit. One of the promising methods is adding H2O vapor as a reactive agent during the electron irradiation. However, various contrary effects of such addition have been reported depending on the experimental condition. We probe the elementary electron-induced processes that are operative in a heterogeneous system consisting of iron pentacarbonyl as an organometallic precursor and water. We use an electron beam of controlled energy that interacts with free mixed Fe(CO)5/H2O clusters. These mimic the heterogeneous system and, at the same time, allow direct mass spectrometric analysis of the reaction products. The anionic decomposition pathways are initiated by dissociative electron attachment (DEA), either to Fe(CO)5 or to H2O. The former one proceeds mainly at low electron energies (<3 eV). Comparison of nonhydrated and hydrated conditions reveals that the presence of water actually stabilizes the ligands against dissociation. The latter one proceeds at higher electron energies (>6 eV), where the DEA to H2O forms OH- in the first reaction step. This intermediate reacts with Fe(CO)5, leading to enhanced decomposition, with the desorption of up to three CO ligands. The present results demonstrate that the water action on Fe(CO)5 decomposition is sensitive to the involved electron energy range and depends on the hydration degree.

8.
Micromachines (Basel) ; 11(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806527

RESUMO

Ammonia (NH3)-assisted purification of deposits fabricated by focused electron beam-induced deposition (FEBID) has recently been proven successful for the removal of halide contaminations. Herein, we demonstrate the impact of combined NH3 and electron processing on FEBID deposits containing hydrocarbon contaminations that stem from anionic cyclopentadienyl-type ligands. For this purpose, we performed FEBID using bis(ethylcyclopentadienyl)ruthenium(II) as the precursor and subjected the resulting deposits to NH3 and electron processing, both in an environmental scanning electron microscope (ESEM) and in a surface science study under ultrahigh vacuum (UHV) conditions. The results provide evidence that nitrogen from NH3 is incorporated into the carbon content of the deposits which results in a covalent nitride material. This approach opens a perspective to combine the promising properties of carbon nitrides with respect to photocatalysis or nanosensing with the unique 3D nanoprinting capabilities of FEBID, enabling access to a novel class of tailored nanodevices.

9.
Sci Rep ; 10(1): 10901, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616780

RESUMO

The fabrication of Ru nanostructures by focused electron beam induced deposition (FEBID) requires suitable precursor molecules and processes to obtain the pure metal. So far this is problematic because established organometallic Ru precursors contain large organic ligands, such as cyclopentadienyl anions, that tend to become embedded in the deposit during the FEBID process. Recently, (η3-C3H5)Ru(CO)3X (X = Cl, Br) has been proposed as an alternative precursor because CO can easily desorb under electron exposure. However, allyl and Cl ligands remain behind after electron irradiation and the removal of the halide requires extensive electron exposures. Auger electron spectroscopy is applied to demonstrate a postdeposition purification process in which NH3 is used as a reactant that enhances the removal of Cl from deposits formed by electron irradiation of thin condensed layers of (η3-C3H5)Ru(CO)3Cl. The loss of CO from the precursor during electron-induced decomposition enables a reaction between NH3 and the Cl ligands that produces HCl. The combined use of electron-stimulated desorption experiments and thermal desorption spectrometry further reveals that thermal reactions contribute to the loss of CO in the FEBID process but remove only minor amounts of the allyl and Cl ligands.

10.
Phys Chem Chem Phys ; 21(5): 2351-2364, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30657503

RESUMO

Electron beam processing of surface-grown coordination polymers is a versatile approach to the fabrication of nanoscale surface structures. Depending on their molecular components, these materials can be converted into pure metallic particles or they can be activated to become a template for the spatially selective decomposition of suitable gaseous precursor molecules and subsequent autocatalytic growth of deposits. However, insight into the fundamental electron-induced chemistry for such processes has been scarce so far. Therefore, we investigated the electron-induced reactions of three self-assembled copper-containing materials, namely, copper(ii) oxalate, copper(ii) squarate, and copper(ii) 1,3,5-benzenetricarboxylate (HKUST-1) which were grown on the surface of self-assembled monolayers of mercaptoundecanoic acid in a layer-by-layer approach from copper(ii) acetate and various linker molecules. Changes incurred to these materials during electron irradiation were monitored by four complementary techniques. Reflection absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS) were used to identify the chemical species that are formed upon electron exposure. The temporal evolution of electron-stimulated desorption (ESD) of neutral volatile fragments was monitored to reveal the kinetics governing the decomposition of the different materials. Furthermore, the morphology was investigated by helium ion microscopy (HIM). A detailed analysis of the results for the different linker molecules provides new insights into the electron-induced chemistry of such surface-grown layers.

11.
J Phys Chem A ; 123(1): 37-47, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30525617

RESUMO

Electron-induced reactions in condensed mixtures of ethylene (C2H4) and methanol (CH3OH) lead to the formation of ethyl methyl ether (EME, C2H5OCH3), as shown by post-irradiation thermal desorption spectrometry (TDS). In contrast to the electron-induced reaction between water (H2O) and C2H4, product formation as a consequence of proton transfer following electron attachment (EA) to C2H4 is not observed in the analogous reaction between CH3OH and C2H4. However, a resonant process centered around 5.5 eV and a threshold-type increase of product yield starting at 9 eV is observed. On the basis of the presence and absence of particular side products after irradiation of the mixture as well as of the pure parent compounds, reaction mechanisms related to the two energy regimes are proposed. Below the ionization threshold of the reactants, dissociative electron attachment (DEA) to CH3OH triggers the reaction sequence by producing reactive methoxy radicals, which attack neighboring C2H4 molecules. The resulting adduct then abstracts a hydrogen atom to yield EME. Above but near the ionization threshold, electron impact ionization (EI) produces primarily intact molecular cations, which drive the reaction by converting the repulsive Coulomb force between the high electron densities at the reactive sites of the two neutral parent species into an attractive force. This again induces the formation of an adduct between the two reactants that rearranges to the product EME. Fragmentation of the molecular CH3OH+• cation into CH3O+, however, may provide an additional reaction pathway toward EME. In this scenario, CH3O+ attacks a neighboring C2H4 molecule. The resulting adduct is then neutralized by a thermalized electron and abstracts a hydrogen atom from a nearby CH3OH molecule to yield EME.

12.
Phys Chem Chem Phys ; 20(47): 29918-29930, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30475374

RESUMO

Several studies have previously observed surprisingly low frequencies for the C-H stretching modes of self-assembled monolayers (SAMs) prepared from aromatic thiols. The reason for this property has so far remained elusive. Therefore, we report a novel study of the vibrational spectra of SAMs prepared on Au from two different aromatic thiols, namely, 4'-nitro-1,1'-biphenyl-4-thiol (NBPT) and 4-aminothiophenol (ATP). The SAMs were prepared by vapor deposition (VD) in ultrahigh vacuum (UHV) as well as by the solution method (SM) and their quality was controlled by X-ray photoelectron spectroscopy (XPS). In addition, amino terminated SAMs were also obtained by electron irradiation and by chemical reduction of NBPT SAMs. Beside infrared reflection absorption spectroscopy (IRRAS), we have employed high resolution electron energy loss spectroscopy (HREELS), by which VD SAMs can be studied in situ, i.e. without exposing them to air. Hence, we can exclude possible contributions of solvent molecules to the vibrational spectra. Nonetheless, HREELS in fact reveals the same large red shift of the C-H stretching modes in the SAMs as also observed in ex situ IRRAS experiments. In contrast, HREELS for physisorbed ATP and ATP in a KBr pellet measured by transmission infrared spectroscopy exhibit the expected aromatic bands. Using a computational approach, we can exclude molecular packing effects as origin of this shift. Therefore, we propose chemical changes in the aromatic rings during SAM formation as an alternative explanation for the observed frequency shift. As another striking effect, the N-H stretching vibrational modes of the amino-terminated SAMs are extremely weak in both IRRAS and HREELS despite the fact that XPS confirms the presence of amino groups. A very weak signal is observed only in the case of an electron irradiated NBPT SAM. In contrast, an energy loss ascribed to the N-H stretching vibrations is clearly observed in HREELS of ATP physisorbed on an ATP SAM and on graphite as well as in the transmission infrared spectrum of ATP in KBr. The extremely low intensity of these vibrations in the SAM is traced back to the inherently low transition dipole moment for the excitation of N-H stretching modes in free N-H groups. Furthermore, the calculations suggest that the much stronger signals of N-H stretching modes involved in hydrogen-bonding with adjacent amino groups are suppressed because these vibrations are oriented parallel to the surface.

13.
Inorg Chem ; 57(20): 12562-12575, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30284825

RESUMO

Stannoles are organometallic rings in which the heteroatom is involved in a form of conjugation that is called σ*-π* conjugation. Only very little is known about how the substituents on the Sn atom or substituents on the stannole ring determine the optoelectronic properties of these heterocycles. In this work, this question has been studied experimentally and theoretically. Calculations of optimized equilibrium geometries, energy gaps between the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs), and of the absorption spectra of a wide range of compounds were performed. The computational data showed that the substituents on the Sn atom influence the optoelectronic properties to a lower extent than the substituents in the 2 and 5 positions of the ring. These substituents in the 2 and 5 positions of the stannole ring can also have a strong influence on the overall planarity of the structure, in which mesomeric effects can play a substantial role only if the structure is planar. Thus, only structures with a planar backbone are of interest in the context of tuning the optoelectronic properties. These were selected for the experimental studies. On the basis of this information, a series of six novel stannoles was synthesized by the formation of a zirconium intermediate and subsequent transmetalation to obtain the tin compound. The calculated electronic HOMO-LUMO energy gaps varied between 2.94 and 2.68 eV. The measured absorption maxima were located between 415 and 448 nm compared to theoretically calculated values ranging from 447 nm (2.77 eV) to 482 nm (2.57 eV). In addition to these optical measurements, cyclic voltammetry data could be obtained, which show two reversible oxidation processes for three of the six stannoles. With this study, it could be demonstrated how the judicious choice of the substituents can lead to large and predictable bathochromic shifts in the absorption spectra.

15.
Beilstein J Nanotechnol ; 9: 77-90, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441253

RESUMO

Focused electron beam induced deposition (FEBID) is a versatile tool for the direct-write fabrication of nanostructures on surfaces. However, FEBID nanostructures are usually highly contaminated by carbon originating from the precursor used in the process. Recently, it was shown that platinum nanostructures produced by FEBID can be efficiently purified by electron irradiation in the presence of water. If such processes can be transferred to FEBID deposits produced from other carbon-containing precursors, a new general approach to the generation of pure metallic nanostructures could be implemented. Therefore this study aims to understand the chemical reactions that are fundamental to the water-assisted purification of platinum FEBID deposits generated from trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3). The experiments performed under ultrahigh vacuum conditions apply a combination of different desorption experiments coupled with mass spectrometry to analyse reaction products. Electron-stimulated desorption monitors species that leave the surface during electron exposure while post-irradiation thermal desorption spectrometry reveals products that evolve during subsequent thermal treatment. In addition, desorption of volatile products was also observed when a deposit produced by electron exposure was subsequently brought into contact with water. The results distinguish between contributions of thermal chemistry, direct chemistry between water and the deposit, and electron-induced reactions that all contribute to the purification process. We discuss reaction kinetics for the main volatile products CO and CH4 to obtain mechanistic information. The results provide novel insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions.

16.
Beilstein J Nanotechnol ; 7: 852-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547602

RESUMO

Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

17.
Angew Chem Int Ed Engl ; 54(14): 4397-400, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25663500

RESUMO

Electron-induced reactions in condensed mixtures of ethylene and water lead to the synthesis of ethanol, as shown by post-irradiation thermal desorption spectrometry (TDS). Interestingly, this synthesis is not only induced by soft electron impact ionization similar to a previously observed electron-induced hydroamination but also, at low electron energy, by electron attachment to ethylene and a subsequent acid/base reaction with water.


Assuntos
Alcenos/química , Elétrons , Água/química
18.
Phys Chem Chem Phys ; 17(2): 1204-16, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25418538

RESUMO

In focused electron beam induced deposition (FEBID) acetylacetone plays a role as a ligand in metal acetylacetonate complexes. As part of a larger effort to understand the chemical processes in FEBID, the electron-induced reactions of acetylacetone were studied both in condensed layers and in the gas phase and compared to those of acetone. X-ray photoelectron spectroscopy (XPS) shows that the electron-induced decomposition of condensed acetone layers yields a non-volatile hydrocarbon residue while electron irradiation of acetylacetone films produces a non-volatile residue that contains not only much larger amounts of carbon but also significant amounts of oxygen. Electron-stimulated desorption (ESD) and thermal desorption spectrometry (TDS) measurements reveal striking differences in the decay kinetics of the layers. In particular, intact acetylacetone suppresses the desorption of volatile products. Gas-phase studies of dissociative electron attachment and electron impact ionization suggest that this effect cannot be traced back to differences in the initial fragmentation reactions of the isolated molecules but is due to subsequent dissociation processes and to an efficient reaction of released methyl radicals with adjacent acetylacetone molecules. These results could explain the incorporation of large amounts of ligand material in deposits fabricated by FEBID processes using acetylacetonate complexes.

19.
Chem Soc Rev ; 42(24): 9219-31, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24088739

RESUMO

Controlling the outcome of reactions is a central issue of chemical research. Physical tools can achieve this if they are able to precisely dissociate specific bonds of a molecule. However, to control synthesis, such tools must induce the formation of new bonds between two reactants to yield a more complex product. In the ideal case of an atom efficient synthesis, this product would contain all or at least most of the initial material. An electron beam is a physical tool that is capable of preparing molecules in reactive states or, at low electron energies, of initiating highly selective bond dissociation. The resulting fragments in turn can react with other molecules to yield stable products. This tutorial review focuses in particular on such low-energy electron-initiated molecular syntheses and their applications in the modification of surfaces. It thus emphasizes strategies towards the controlled and predictable formation of more complex products from small reactants initiated by interaction with low-energy electrons either through selective bond dissociation or formation of specific reactive molecular species. However, selective bond dissociation is not always desirable. This is briefly illustrated by the case of electron beam induced deposition where additional strategies may be required to control product formation.

20.
Nanoscale ; 5(3): 1034-46, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23255050

RESUMO

Iron oxide nanoparticles (IONP) are currently being studied as green magnet resonance imaging (MRI) contrast agents. They are also used in huge quantities for environmental remediation and water treatment purposes, although very little is known on the consequences of such applications for organisms and ecosystems. In order to address these questions, we synthesised polyvinylpyrrolidone-coated IONP, characterised the particle dispersion in various media and investigated the consequences of an IONP exposure using an array of biochemical and biological assays. Several theoretical approaches complemented the measurements. In aqueous dispersion IONP had an average hydrodynamic diameter of 25 nm and were stable over six days in most test media, which could also be predicted by stability modelling. The particles were tested in concentrations of up to 100 mg Fe per L. The activity of the enzymes glutathione reductase and acetylcholine esterase was not affected, nor were proliferation, morphology or vitality of mammalian OLN-93 cells although exposure of the cells to 100 mg Fe per L increased the cellular iron content substantially. Only at this concentration, acute toxicity tests with the freshwater flea Daphnia magna revealed slightly, yet insignificantly increased mortality. Two fundamentally different bacterial assays, anaerobic activated sludge bacteria inhibition and a modified sediment contact test with Arthrobacter globiformis, both rendered results contrary to the other assays: at the lowest test concentration (1 mg Fe per L), IONP caused a pronounced inhibition whereas higher concentrations were not effective or even stimulating. Preliminary and prospective risk assessment was exemplified by comparing the application of IONP with gadolinium-based nanoparticles as MRI contrast agents. Predicted environmental concentrations were modelled in two different scenarios, showing that IONP could reduce the environmental exposure of toxic Gd-based particles by more than 50%. Application of the Swiss "Precautionary Matrix for Synthetic Nanomaterials" rendered a low precautionary need for using our IONP as MRI agents and a higher one when using them for remediation or water treatment. Since IONP and (considerably more reactive) zerovalent iron nanoparticles are being used in huge quantities for environmental remediation purposes, it has to be ascertained that these particles pose no risk to either human health or to the environment.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Química Verde/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Modelos Químicos , Água/química , Animais , Simulação por Computador , Humanos , Teste de Materiais , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA