Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400396, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659321

RESUMO

The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystem II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling. This transition stabilizes the Mn4 dxy orbital, enabling electron transfer from the oxo ligand to the dxy orbital, converting the oxo ligand into an oxyl species. The role of the water is to coordinate with the square pyramidal structure, reducing the energy gap between the oxo and oxyl forms, thereby lowering the activation energy for O-O coupling. This mechanism applies not only to the OEC system but also to other Mn(V)-based catalysts. For other catalysts, ligands such as OH- stabilize the Mn(IV)-oxyl species better than water, improving catalyst activation for reactions like C-H bond activation. This study is the first to explain the Mn(V)-oxo to Mn(IV)-oxyl conversion, providing a new foundation for Mn-based catalyst design.

2.
Dalton Trans ; 53(17): 7580-7589, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38616680

RESUMO

The experimentally reported Mn(IV)Mn(III) complex [Mn2(µ-O)2(terpy)2(OH2)2]3+ has been observed catalyzing O2 generation with oxidants like ClO- and HSO5-. Previous mechanistic studies primarily focused on O2 generation with HSO5-, concluding that Mn(IV)Mn(III) acts as a catalyst, generating a Mn(IV)Mn(IV)-oxyl species as a key intermediate responsible for O-O bond formation. This computational study employs DFT calculations to investigate whether the catalytic generation of O2 using ClO- follows the same mechanism previously identified with HSO5- as the oxidant, or if it proceeds through an alternate pathway. To this end, we explored multiple pathways using ClO- as the oxidant. Interestingly, our findings confirm that in the case of ClO- as the oxidant, similar to what was observed with HSO5-, the Mn(IV)Mn(IV)-oxyl species indeed plays a crucial role in driving the catalytic evolution of O2 with the potential formation of the binuclear complexes Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH during the reaction. These complexes are reactive in producing O2, with activation free energies of 15.9 and 14.3 kcal mol-1, respectively. However, our calculations revealed that the Mn(IV)Mn(IV)-oxyl complex is significantly more reactive in producing O2 than Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH, with a lower free energy barrier of 8.1 kcal mol-1. Consequently, even though Mn(IV)Mn(IV)-oxyl is predicted to be present in much lower concentrations than Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH, it emerges as the species acting as the active catalyst for catalytic O2 generation. This study enhances our knowledge of high oxidation state (+3 and +4) manganese chemistry, highlighting its key role in catalysis and paving the way for more efficient Mn-based catalysts with broad applications.

3.
Materials (Basel) ; 16(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984290

RESUMO

In this study, new composite materials comprising zeolitic imidazolate framework (ZIF) structures and microchannel glass (MCG) plates were fabricated using the hydrothermal method and their morphological and spectral properties were investigated using XRD, SEM, FTIR, and Raman spectroscopy. XRD studies of powder samples revealed the presence of an additional phase for a ZIF-8 sample, whereas ZIF-67 samples, which were prepared through two different chemical routes, showed no additional phases. A detailed analysis of the FTIR and micro-Raman spectra of the composite samples revealed the formation of stable ZIF structures inside the macropores of the MCG substrate. The hydrophilic nature of the MCG substrate and its interaction with the ZIF structure resulted in the formation of stable ZIF-MCG composites. We believe that these composite materials may find a wide range of important applications in the field of sensors, molecular sieving.

4.
Nat Commun ; 13(1): 1304, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292657

RESUMO

Renewable, or green, hydrogen will play a critical role in the decarbonisation of hard-to-abate sectors and will therefore be important in limiting global warming. However, renewable hydrogen is not cost-competitive with fossil fuels, due to the moderate energy efficiency and high capital costs of traditional water electrolysers. Here a unique concept of water electrolysis is introduced, wherein water is supplied to hydrogen- and oxygen-evolving electrodes via capillary-induced transport along a porous inter-electrode separator, leading to inherently bubble-free operation at the electrodes. An alkaline capillary-fed electrolysis cell of this type demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 A cm-2 and 85 °C of only 1.51 V, equating to 98% energy efficiency, with an energy consumption of 40.4 kWh/kg hydrogen (vs. ~47.5 kWh/kg in commercial electrolysis cells). High energy efficiency, combined with the promise of a simplified balance-of-plant, brings cost-competitive renewable hydrogen closer to reality.


Assuntos
Eletrólise , Hidrogênio , Eletrodos , Hidrogênio/metabolismo , Porosidade , Água
5.
Phys Chem Chem Phys ; 23(1): 514-527, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33325461

RESUMO

The use of graphenic carbon is attractive as a basal or intermediate support for catalytic particles in advanced catalytic electrodes. This popularity is motivated by its excellent electrical properties and ability to form foliated conformal coatings of exceptional surface area and flexibility. Surface- and edge-functionalisation of graphene sheets affords diverse routes to the covalent attachment of candidate catalytic species. Of particular interest to advanced water oxidation is the possibility of covalent attachment of MnxOy species partially recapitulating the chemistry of the Mn4O5Ca active site of Photosystem II (PSII), which achieves the four-electron oxidation of water under physiological conditions. Here, we report aperiodic density functional theory (DFT) investigations of candidate attachment geometries for a variety of manganese oxide particles to graphene sheets. We find that the flexibility of graphene sheets as well as the conformational degrees of freedom of candidate edge functionalisation permits a large variety of realistic attachment geometries that can act as attachment sites for molecular manganese-oxide species or nuclei for the growth of periodic manganese oxides. We find that substantially simplified models of graphene attachment afford an excellent compromise between computational efficiency, tractability, and accuracy, and characterise the accuracy of these models in detail.

6.
ACS Appl Mater Interfaces ; 10(33): 28176-28186, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30052032

RESUMO

A significant and long-standing problem in electrochemistry has demanded the need for gas diffusion electrodes that are "flood-proof" and "leak-proof" when operated with a liquid electrolyte. The absence of a solution to this problem has, effectively, made it unviable to use gas diffusion electrodes in many electrochemical manufacturing processes, especially as " gas-depolarized" counter electrodes with significantly decreased energy consumption. In this work, Gortex membranes (also known as expanded PTFE or ePTFE) have been studied as novel, leak-proof substrates for gas diffusion electrodes [PTFE = poly(tetrafluoroethylene)]. We report the fabrication, characterization, and operation of gas diffusion electrodes comprising finely pored Gortex overcoated with 10% Pt on Vulcan XC72, PTFE binder, and a fine Ni mesh as a current carrier. Capillary flow porometry indicated that the electrodes only flooded/leaked when the excess of pressure on their liquid-side over their gas-side was 5.7 atm. This is more than an order of magnitude greater than any previous gas diffusion electrode. The Gortex electrodes were tested as hydrogen- and oxygen-depolarized anodes and cathodes in an alkaline fuel cell in which the liquid electrolyte was pressurized to 0.5-1.5 atm above the gas pressures. Despite the record high electrolyte pressure, the electrodes, which had Pt loadings of only 0.075 mg Pt/cm2, exhibited notable activity over 2 d of continuous, leak-free operation. Under the applied liquid pressure, the fuel cell also overcame all of the key technical challenges that have hindered the adoption of alkaline fuel cells to date. The high activity and unprecedented resistance to leaking/flooding exhibited by these electrodes, even when subjected to large liquid electrolyte overpressures under gas depolarization conditions, provide an important advance with far-reaching implications for electrochemical manufacturing.

9.
Nanoscale ; 2(2): 282-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20644806

RESUMO

Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.


Assuntos
Nanopartículas Metálicas/química , Micro-Ondas , Nanotubos de Carbono/química , Platina/química , Catálise , Fontes de Energia Elétrica , Técnicas Eletroquímicas , Análise Espectral Raman , Termogravimetria
10.
Chem Commun (Camb) ; 46(26): 4824-6, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20508877

RESUMO

A novel designed free-standing, sandwich-structured membrane electrode assembly (MEA), nano-Pt loaded (0.142 mg cm(-2)) ACNT/Nafion/ACNT via the attachment of two sets of aligned CNT array electrode structures to opposite sides of a Nafion PEM membrane exhibits significantly improved performance compared to commercially available Pt/CB catalysts used in PEM fuel cell applications.

11.
J Am Chem Soc ; 132(9): 2892-4, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20155923

RESUMO

A photoelectrochemical cell was designed that catalyzes the photooxidation of water using visible light as the sole energy source and a molecular catalyst, [Mn(4)O(4)L(6)](+) (1(+), L = bis(methoxyphenyl)phosphinate), synthesized from earth-abundant elements. The essential features include a photochemical charge separation system, [Ru(II)(bipy)(2)(bipy(COO)(2))], adhered to titania-coated FTO conductive glass, and 1(+) embedded within a proton-conducting membrane (Nafion). The complete photoanode represents a functional analogue of the water-oxidizing center of natural photosynthesis.


Assuntos
Materiais Biomiméticos/química , Manganês/química , Compostos Organometálicos/química , Rutênio/química , Titânio/química , Água/química , Catálise , Eletroquímica , Eletrodos , Hidrogênio/química , Oxirredução , Fotoquímica
12.
Acc Chem Res ; 42(12): 1935-43, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19908827

RESUMO

Hydrogen is the most promising fuel of the future owing to its carbon-free, high-energy content and potential to be efficiently converted into either electrical or thermal energy. The greatest technical barrier to accessing this renewable resource remains the inability to create inexpensive catalysts for the solar-driven oxidation of water. To date, the most efficient system that uses solar energy to oxidize water is the photosystem II water-oxidizing complex (PSII-WOC), which is found within naturally occurring photosynthetic organisms. The catalytic core of this enzyme is a CaMn(4)O(x) cluster, which is present in all known species of oxygenic phototrophs and has been conserved since the emergence of this type of photosynthesis about 2.5 billion years ago. The key features that facilitate the catalytic success of the PSII-WOC offer important lessons for the design of abiological water oxidation catalysts. In this Account, we examine the chemical principles that may govern the PSII-WOC by comparing the water oxidation capabilities of structurally related synthetic manganese-oxo complexes, particularly those with a cubical Mn(4)O(4) core ("cubanes"). We summarize this research, from the self-assembly of the first such clusters, through the elucidation of their mechanism of photoinduced rearrangement to release O(2), to recent advances highlighting their capability to catalyze sustained light-activated electrolysis of water. The [Mn(4)O(4)](6+) cubane core assembles spontaneously in solution from monomeric precursors or from [Mn(2)O(2)](3+) core complexes in the presence of metrically appropriate bidentate chelates, for example, diarylphosphinates (ligands of Ph(2)PO(2)(-) and 4-phenyl-substituted derivatives), which bridge pairs of Mn atoms on each cube face (Mn(4)O(4)L(6)). The [Mn(4)O(4)](6+) core is enlarged relative to the [Mn(2)O(2)](3+) core, resulting in considerably weaker Mn-O bonds. Cubanes are ferocious oxidizing agents, stronger than analogous complexes with the [Mn(2)O(2)](3+) core, as demonstrated both by the range of substrates they dehydrogenate or oxygenate (unactivated alkanes, for example) and the 25% larger O-H bond enthalpy of the resulting mu(3)-OH bridge. The cubane core topology is structurally suited to releasing O(2), and it does so in high yield upon removal of one phosphinate by photoexcitation in the gas phase or thermal excitation in the solid state. This is quite unlike other Mn-oxo complexes and can be attributed to the elongated Mn-O bond lengths and low-energy transition state to the mu-peroxo precursor. The photoproduct, [Mn(4)O(2)L(5)](+), an intact nonplanar butterfly core complex, is poised for oxidative regeneration of the cubane core upon binding of two water molecules and coupling to an anode. Catalytic evolution of O(2) and protons from water exceeding 1000 turnovers can be readily achieved by suspending the oxidized cubane, [Mn(4)O(4)L(6)](+), into a proton-conducting membrane (Nafion) preadsorbed onto a conducting electrode and electroxidizing the photoreduced butterfly complexes by the application of an external bias. Catalytic water oxidation can be achieved using sunlight as the only source of energy by replacing the external electrical bias with redox coupling to a photoanode incorporating a Ru(bipyridyl) dye.


Assuntos
Compostos de Manganês/química , Óxidos/química , Fotossíntese , Água/metabolismo , Catálise , Transporte de Elétrons , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Prótons , Água/química
13.
Phys Chem Chem Phys ; 11(30): 6441-9, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19809676

RESUMO

High valence states in manganese clusters are a key feature of the function of one of the most important catalysts found in nature, the water-oxidizing complex of photosystem II. We describe a detailed electrochemical investigation of two bio-inspired manganese-oxo complexes, [Mn(4)O(4)L(6)] (L = diphenylphosphinate (1) and bis(p-methoxyphenyl)phosphinate (2)), in solution, attached to an electrode surface and suspended within a Nafion film. These complexes contain a cubic [Mn(4)O(4)](6+) core stabilized by phosphinate ligands. They have previously been shown to be active and durable photocatalysts for the oxidation of water to dioxygen. A comparison of catalytic photocurrent generated by films deposited by two methods of electrode immobilization reveals that doping of the catalyst in Nafion results in higher photocurrent than was observed for a solid layer of cubane on an electrode surface. In dichloromethane solution, and under conditions of cyclic voltammetry, the one-electron oxidation processes 1/1(+) and 2/2(+) were found to be reversible and quasi-reversible, respectively. Some decomposition of 1(+) and 2(+) was detected on the longer timescale of bulk electrolysis. Both compounds also undergo a two-electron, chemically irreversible reduction in dichloromethane, with a mechanism that is dependent on scan rate and influenced by the presence of a proton donor. When immersed in aqueous electrolyte, the reduction process exhibits a limited level of chemical reversibility. These data provide insights into the catalytic operation of these molecules during photo-assisted electrolysis of water and highlight the importance of the strongly electron-donating ligand environment about the manganese ions in the ability of the cubanes to photocatalyze water oxidation at low overpotentials.


Assuntos
Eletroquímica/métodos , Manganês/química , Oxigênio/química , Água/química , Cristalização , Polímeros de Fluorcarboneto/química , Teste de Materiais , Cloreto de Metileno/química , Modelos Químicos , Fotoquímica/métodos , Prótons , Espectrofotometria Ultravioleta/métodos
14.
Dalton Trans ; (43): 9374-84, 2009 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19859588

RESUMO

Photoelectrochemical cells that efficiently split water into oxygen and hydrogen, "the fuel of the future", need to combine robust water oxidation catalysts at the anode (2H(2)O --> O(2) + 4H(+) + 4e(-)) with hydrogen reduction catalysts at the cathode (2H(+) + 2e(-)--> H(2)). Both sets of catalysts will, ideally, operate at low overpotentials and employ light-driven or light-assisted processes. In this Perspective article, we focus on significant efforts to develop solid state materials and molecular coordination complexes as catalyst for water oxidation. We briefly review the field with emphasis on the various molecular catalysts that have been developed and then examine the activity of molecular catalysts in water oxidation following their attachment to conducting electrodes. For such molecular species to be useful in a solar water-splitting device it is preferable that they are securely and durably affixed to an electrode surface. We also consider recent developments aimed at combining the action of molecular catalysts with light absorption so that light driven water oxidation may be achieved.


Assuntos
Fontes de Energia Elétrica , Água/química , Catálise , Corantes/química , Eletroquímica , Oxirredução
15.
Inorg Chem ; 48(15): 7269-79, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19572724

RESUMO

The bioinspired Mn-oxo cubane complex, [Mn(4)O(4)L(6)](+) 1b(+) (L = (p-MeO-Ph)(2)PO(2)), is a model of the photosynthetic O(2)-evolving complex. It is able to electro-oxidize water at 1.00 V (vs Ag/AgCl) under illumination by UV-visible light when suspended in a proton-conducting membrane (Nafion) coated onto a conducting electrode. Electrochemical measurements, and UV-visible, NMR, and EPR spectroscopies are interpreted to indicate that 1b(+) is the dominant electro-active species in the Nafion, both before and after catalytic cycling, and thus correlates closely with activity. The observation of a possible intermediate and free phosphinate ligand within the Nafion suggests a catalytic mechanism involving photolytic disruption of a phosphinate ligand, followed by O(2) formation, and subsequent reassembly of the cubane structure. Several factors that influence catalytic turnover such as the applied potential, illumination wavelength, and energy have been examined in respect of attaining optimum catalytic activity. Catalytic turnover frequencies of 20-270 molecules O(2) h(-1) catalyst(-1) at an overpotential of 0.38 V plus light (275-750 nm) and turnovers numbers >1000 molecules O(2) catalyst(-1) are observed. The 1b(+)-Nafion system is among the most active and durable molecular water oxidation catalysts known.


Assuntos
Compostos Organometálicos/química , Oxigênio/química , Fotossíntese , Água/química , Catálise , Técnicas Eletroquímicas , Polímeros de Fluorcarboneto/química , Estrutura Molecular , Oxirredução
16.
Chemistry ; 15(19): 4746-59, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19350589

RESUMO

Chemical reactions may be controlled by either: 1) the minimum threshold energy that must be overcome during collisions between reactant molecules/atoms (the activation energy, E(a)), or: 2) the rate at which reactant collisions occur (the collision frequency, A)--for reactions with low E(a). Reactions of type 2 are governed by the physical, mechanical interaction of the reactants. Such mechanical processes are unusual, but not unknown in molecular catalysts. In this work we examine the machine-like nature of the action in various abiological mechanical catalysts and consider the implications for mimicry of biological catalysts.

18.
Chem Commun (Camb) ; (32): 3353-5, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18019496

RESUMO

Monomeric cobalt(II) tetraphenylporphyrin immobilized in high concentrations within vapour-phase polymerized polypyrrole deposited on an ITO electrode catalyzes the 4-electron reduction of dioxygen to water, a reaction requiring concerted action by two separate catalytic groups.


Assuntos
Cobalto/química , Metaloporfirinas/química , Oxigênio/química , Catálise , Eletroquímica , Eletrodos , Oxirredução , Água/química
20.
Inorg Chem ; 42(26): 8709-15, 2003 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-14686848

RESUMO

The ligand (R,S)-Ph(2)PCH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)PPh(2), (R,S)-tetraphos, combines with silver(I) and gold(I) ions in the presence of hexafluorophosphate to diastereoselectively self-assemble the head-to-head (H,H) diastereomers of the double-stranded, dinuclear metal complexes [M(2)[(R,S)-tetraphos](2)](PF(6))(2) in which the two chiral metal centers in the complexes have M (R end of phosphine) and P (S end of phosphine) configurations. The crystal and molecular structures of the compounds have been determined: (H,H)-(M,P) -[Ag(2)[(R,S)-tetraphos](2)](PF(6))(2), monoclinic, P2(1)/c, a = 10.3784(2), b = 47.320(1), c = 17.3385(4) A, beta = 103.8963(5) degrees, Z = 4; (H,H)-(M,P)-[Au(2)[(R,S)-tetraphos](2)](PF(6))(2), monoclinic, P.2(1) (No. 4, c unique axis), a = 24.385(4), b = 46.175(3), c = 14.820(4) A, Z = 8. The complexes crystallize as racemic compounds in which the unit cell in each case contains equal numbers of enantiomorphic molecules of the cation and associated anions. The cations in both structures have similar side-by-side structures of idealized C(2) symmetry, the bulk helicity of each molecule in the solid state being due solely to the twist of the central ten-membered ring containing the two metal ions of opposite configuration, which has the chiral twist-boat-chair-boat conformation. When 1 equiv each of (R,S)-tetraphos, (R,R)-(+/-)-tetraphos, (S,S)-(+)-tetraphos, 2 equiv of Ph(2)PCH(2)CH(2)PPh(2) (dppe), and 7 equiv of [AuCl(SMe(2))] in dichloromethane are allowed to react for several minutes in the presence of an excess of ammonium hexafluorophosphate in water (two phases), the products are the double-stranded digold(I) complexes in which each ligand strand has recognized itself by stereoselective self-assembly, together with [Au(dppe)(2)]PF(6).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...