Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(11): 113411, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952155

RESUMO

Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Epigenômica , Mutação/genética
3.
Cell Rep Methods ; 3(6): 100504, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426756

RESUMO

Social motivation is critical to the development of typical social functioning. Social motivation, specifically one or more of its components (e.g., social reward seeking or social orienting), could be relevant for understanding phenotypes related to autism. We developed a social operant conditioning task to quantify effort to access a social partner and concurrent social orienting in mice. We established that mice will work for access to a social partner, identified sex differences, and observed high test-retest reliability. We then benchmarked the method with two test-case manipulations. Shank3B mutants exhibited reduced social orienting and failed to show social reward seeking. Oxytocin receptor antagonism decreased social motivation, consistent with its role in social reward circuitry. Overall, we believe that this method provides a valuable addition to the assessment of social phenotypes in rodent models of autism and the mapping of potentially sex-specific social motivation neural circuits.


Assuntos
Transtorno Autístico , Ocitocina , Feminino , Masculino , Camundongos , Animais , Motivação , Transtorno Autístico/genética , Comportamento Social , Reprodutibilidade dos Testes
4.
Genes Brain Behav ; 22(4): e12853, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370259

RESUMO

Williams syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1, which encodes a transcription factor suggested to play a role in the behavioral profile of Williams syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A "complete deletion" mouse, heterozygously eliminating the syntenic Williams syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1, which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the complete deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams syndrome critical region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.


Assuntos
Síndrome de Williams , Camundongos , Animais , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Transativadores/genética , Transativadores/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição/genética , Comportamento Social , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
5.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909558

RESUMO

Phenotypic heterogeneity is a common feature of monogenic neurodevelopmental disorders that can arise from differential severity of missense variants underlying disease, but how distinct alleles impact molecular mechanisms to drive variable disease presentation is not well understood. Here, we investigate missense mutations in the DNA methyltransferase DNMT3A associated with variable overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity in neurodevelopmental disease. We generate a DNMT3A P900L/+ mouse model mimicking a disease mutation with mild-to-moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. We show that the P900L mutation leads to disease-relevant overgrowth, obesity, and social deficits shared across DNMT3A disorder models, while the R878H mutation causes more extensive epigenomic disruption leading to differential dysregulation of enhancers elements. We identify distinct gene sets disrupted in each mutant which may contribute to mild or severe disease, and detect shared transcriptomic disruption that likely drives common phenotypes across affected individuals. Finally, we demonstrate that core gene dysregulation detected in DNMT3A mutant mice overlaps effects in other developmental disorder models, highlighting the importance of DNMT3A-deposited methylation in neurodevelopment. Together, these findings define central drivers of DNMT3A disorders and illustrate how variable disruption of transcriptional mechanisms can drive the spectrum of phenotypes in neurodevelopmental disease.

6.
Cereb Cortex ; 33(12): 7436-7453, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36897048

RESUMO

As a regressive neurodevelopmental disorder with a well-established genetic cause, Rett syndrome and its Mecp2 loss-of-function mouse model provide an excellent opportunity to define potentially translatable functional signatures of disease progression, as well as offer insight into the role of Mecp2 in functional circuit development. Thus, we applied widefield optical fluorescence imaging to assess mesoscale calcium functional connectivity (FC) in the Mecp2 cortex both at postnatal day (P)35 in development and during the disease-related decline. We found that FC between numerous cortical regions was disrupted in Mecp2 mutant males both in juvenile development and early adulthood. Female Mecp2 mice displayed an increase in homotopic contralateral FC in the motor cortex at P35 but not in adulthood, where instead more posterior parietal regions were implicated. An increase in the amplitude of connection strength, both with more positive correlations and more negative anticorrelations, was observed across the male cortex in numerous functional regions. Widespread rescue of MeCP2 protein in GABAergic neurons rescued none of these functional deficits, nor, surprisingly, the expected male lifespan. Altogether, the female results identify early signs of disease progression, while the results in males indicate MeCP2 protein is required for typical FC in the brain.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Masculino , Feminino , Camundongos , Animais , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Encéfalo , Neurônios GABAérgicos/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711815

RESUMO

Williams Syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams Syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1 , which encodes a transcription factor suggested to play a role in the behavioral profile of Williams Syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias, and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A 'Complete Deletion' mouse, heterozygously eliminating the syntenic Williams Syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1 , which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the Complete Deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams Syndrome Critical Region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.

8.
Psychopharmacology (Berl) ; 239(12): 3859-3873, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269379

RESUMO

RATIONALE: In utero opioid exposure is associated with lower weight and a neonatal opioid withdrawal syndrome (NOWS) at birth, along with longer-term adverse neurodevelopmental outcomes and mood disorders. While NOWS is sometimes treated with continued opioids, clinical studies have not addressed if long-term neurobehavioral outcomes are worsened with continued postnatal exposure to opioids. In addition, pre-clinical studies comparing in utero only opioid exposure to continued post-natal opioid administration for withdrawal mitigation are lacking. OBJECTIVES: Here, we sought to understand the impact of continued postnatal opioid exposure on long term behavioral consequences. METHODS: We implemented a rodent perinatal opioid exposure model of oxycodone (Oxy) exposure that included Oxy exposure until birth (short Oxy) and continued postnatal opioid exposure (long Oxy) spanning gestation through birth and lactation. RESULTS: Short Oxy exposure was associated with a sex-specific increase in weight gain trajectory in adult male mice. Long Oxy exposure caused an increased weight gain trajectory in adult males and alterations in nociceptive processing in females. Importantly, there was no evidence of long-term social behavioral deficits, anxiety, hyperactivity, or memory deficits following short or long Oxy exposure. CONCLUSIONS: Our findings suggest that offspring with prolonged opioid exposure experienced some long-term sequelae compared to pups with opioid cessation at birth. These results highlight the potential long-term consequences of opioid administration as a mitigation strategy for clinical NOWS symptomology and suggest alternatives should be explored.


Assuntos
Trajetória do Peso do Corpo , Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Gravidez , Humanos , Feminino , Recém-Nascido , Masculino , Camundongos , Animais , Oxicodona , Analgésicos Opioides , Síndrome de Abstinência Neonatal/tratamento farmacológico , Síndrome de Abstinência Neonatal/etiologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Percepção , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
9.
Genes Brain Behav ; 21(1): e12750, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33978321

RESUMO

Williams Syndrome results in distinct behavioral phenotypes, which include learning deficits, anxiety, increased phobias and hypersociability. While the underlying mechanisms driving this subset of phenotypes is unknown, oxytocin (OT) dysregulation is hypothesized to be involved as some studies have shown elevated blood OT and altered OT receptor expression in patients. A "Complete Deletion" (CD) mouse, modeling the hemizygous deletion in Williams Syndrome, recapitulates many of the phenotypes present in humans. These CD mice also exhibit impaired fear responses in the conditioned fear task. Here, we address whether OT dysregulation is responsible for this impaired associative fear memory response. We show direct delivery of an OT receptor antagonist to the central nervous system did not rescue the attenuated contextual or cued fear memory responses in CD mice. Thus, increased OT signaling is not acutely responsible for this phenotype. We also evaluated OT receptor and serotonin transporter availability in regions related to fear learning, memory and sociability using autoradiography in wild type and CD mice. While no differences withstood correction, we identified regions that may warrant further investigation. There was a nonsignificant decrease in OT receptor expression in the lateral septal nucleus and nonsignificant lowered serotonin transporter availability in the striatum and orbitofrontal cortex. Together, these data suggest the fear conditioning anomalies in the Williams Syndrome mouse model are independent of any alterations in the oxytocinergic system caused by deletion of the Williams locus.


Assuntos
Medo , Memória , Receptores de Ocitocina/metabolismo , Síndrome de Williams/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Feminino , Masculino , Camundongos , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Comportamento Social , Síndrome de Williams/fisiopatologia
10.
Neuron ; 109(23): 3775-3792.e14, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614421

RESUMO

Human genetics have defined a new neurodevelopmental syndrome caused by loss-of-function mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. However, how MYT1L mutation causes intellectual disability, autism, ADHD, obesity, and brain anomalies is unknown. Here, we developed a Myt1l haploinsufficient mouse model that develops obesity, white-matter thinning, and microcephaly, mimicking common clinical phenotypes. During brain development we discovered disrupted gene expression, mediated in part by loss of Myt1l gene-target activation, and identified precocious neuronal differentiation as the mechanism for microcephaly. In contrast, in adults we discovered that mutation results in failure of transcriptional and chromatin maturation, echoed in disruptions in baseline physiological properties of neurons. Myt1l haploinsufficiency also results in behavioral anomalies, including hyperactivity, muscle weakness, and social alterations, with more severe phenotypes in males. Overall, our findings provide insight into the mechanistic underpinnings of this disorder and enable future preclinical studies.


Assuntos
Deficiência Intelectual , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Animais , Encéfalo/metabolismo , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Fenótipo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...