Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Bull Math Biol ; 85(7): 64, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37270711

RESUMO

In this work, we describe mostly analytical work related to a novel approach to parameter identification for a two-variable Lotka-Volterra (LV) system. Specifically, this approach is qualitative, in that we aim not to determine precise values of model parameters but rather to establish relationships among these parameter values and properties of the trajectories that they generate, based on a small number of available data points. In this vein, we prove a variety of results about the existence, uniqueness, and signs of model parameters for which the trajectory of the system passes exactly through a set of three given data points, representing the smallest possible data set needed for identification of model parameter values. We find that in most situations such a data set determines these values uniquely; we also thoroughly investigate the alternative cases, which result in nonuniqueness or even nonexistence of model parameter values that fit the data. In addition to results about identifiability, our analysis provides information about the long-term dynamics of solutions of the LV system directly from the data without the necessity of estimating specific parameter values.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Animais , Dinâmica Populacional , Comportamento Predatório
2.
Front Med (Lausanne) ; 9: 794423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665340

RESUMO

Introduction: Targeted therapies for sepsis have failed to show benefit due to high variability among subjects. We sought to demonstrate different phenotypes of septic shock based solely on clinical features and show that these relate to outcome. Methods: A retrospective analysis was performed of a 1,023-subject cohort with early septic shock from the ProCESS trial. Twenty-three clinical variables at baseline were analyzed using hierarchical clustering, with consensus clustering used to identify and validate the ideal number of clusters in a derivation cohort of 642 subjects from 20 hospitals. Clusters were visualized using heatmaps over 0, 6, 24, and 72 h. Clinical outcomes were 14-day all-cause mortality and organ failure pattern. Cluster robustness was confirmed in a validation cohort of 381 subjects from 11 hospitals. Results: Five phenotypes were identified, each with unique organ failure patterns that persisted in time. By enrollment criteria, all patients had shock. The two high-risk phenotypes were characterized by distinct multi-organ failure patterns and cytokine signatures, with the highest mortality group characterized most notably by liver dysfunction and coagulopathy while the other group exhibited primarily respiratory failure, neurologic dysfunction, and renal dysfunction. The moderate risk phenotype was that of respiratory failure, while low-risk phenotypes did not have a high degree of additional organ failure. Conclusions: Sepsis phenotypes with distinct biochemical abnormalities may be identified by clinical characteristics alone and likely provide an opportunity for early clinical actionability and prognosis.

3.
J Theor Biol ; 533: 110948, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34757193

RESUMO

Exposure to pathogens elicits a complex immune response involving multiple interdependent pathways. This response may mitigate detrimental effects and restore health but, if imbalanced, can lead to negative outcomes including sepsis. This complexity and need for balance pose a challenge for clinicians and have attracted attention from modelers seeking to apply computational tools to guide therapeutic approaches. In this work, we address a shortcoming of such past efforts by incorporating the dynamics of energy production and consumption into a computational model of the acute immune response. With this addition, we performed fits of model dynamics to data obtained from non-human primates exposed to Escherichia coli. Our analysis identifies parameters that may be crucial in determining survival outcomes and also highlights energy-related factors that modulate the immune response across baseline and altered glucose conditions.


Assuntos
Sepse , Animais , Escherichia coli
4.
PLOS Digit Health ; 1(2): e0000012, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36812511

RESUMO

Sepsis is a potentially life-threatening inflammatory response to infection or severe tissue damage. It has a highly variable clinical course, requiring constant monitoring of the patient's state to guide the management of intravenous fluids and vasopressors, among other interventions. Despite decades of research, there's still debate among experts on optimal treatment. Here, we combine for the first time, distributional deep reinforcement learning with mechanistic physiological models to find personalized sepsis treatment strategies. Our method handles partial observability by leveraging known cardiovascular physiology, introducing a novel physiology-driven recurrent autoencoder, and quantifies the uncertainty of its own results. Moreover, we introduce a framework for uncertainty-aware decision support with humans in the loop. We show that our method learns physiologically explainable, robust policies, that are consistent with clinical knowledge. Further our method consistently identifies high-risk states that lead to death, which could potentially benefit from more frequent vasopressor administration, providing valuable guidance for future research.

5.
Chaos ; 31(3): 033143, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33810738

RESUMO

Entrainment of a nonlinear oscillator by a periodic external force is a much studied problem in nonlinear dynamics and characterized by the well-known Arnold tongues. The circle map is the simplest such system allowing for stable N:M entrainment where the oscillator produces N cycles for every M stimulus cycles. There are a number of experiments that suggest that entrainment to external stimuli can involve both a shift in the phase and an adjustment of the intrinsic period of the oscillator. Motivated by a recent model of Loehr et al. [J. Exp. Psychol.: Hum. Percept. Perform. 37, 1292 (2011)], we explore a two-dimensional map in which the phase and the period are allowed to update as a function of the phase of the stimulus. We characterize the number and stability of fixed points for different N:M-locking regions, specifically, 1:1, 1:2, 2:3, and their reciprocals, as a function of the sensitivities of the phase and period to the stimulus as well as the degree that the oscillator has a preferred period. We find that even in the limited number of locking regimes explored, there is a great deal of multi-stability of locking modes, and the basins of attraction can be complex and riddled. We also show that when the forcing period changes between a starting and final period, the rate of this change determines, in a complex way, the final locking pattern.

6.
J Theor Biol ; 460: 101-114, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30149010

RESUMO

When a pathogen invades the body, an acute inflammatory response is activated to eliminate the intruder. In some patients, runaway activation of the immune system may lead to collateral tissue damage and, in the extreme, organ failure and death. Experimental studies have found an association between severe infections and depletion in levels of adenosine triphosphate (ATP), increase in nitric oxide production, and accumulation of lactate, suggesting that tissue energetics is compromised. In this work we present a differential equations model that incorporates the dynamics of ATP, nitric oxide, and lactate accompanying an acute inflammatory response and employ this model to explore their roles in shaping this response. The bifurcation diagram of the model system with respect to the pathogen growth rate reveals three equilibrium states characterizing the health, aseptic and septic conditions. We explore the domains of attraction of these states to inform the instantiation of heterogeneous virtual patient populations utilized in a survival analysis. We then apply the model to study alterations in the inflammatory response and survival outcomes in metabolically altered conditions such as hypoglycemia, hyperglycemia, and hypoxia.


Assuntos
Metabolismo Energético/imunologia , Inflamação/metabolismo , Modelos Teóricos , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Infecções/imunologia , Infecções/metabolismo , Infecções/mortalidade , Infecções/patologia , Ácido Láctico/metabolismo , Óxido Nítrico/metabolismo , Análise de Sobrevida
7.
PLoS One ; 13(11): e0207764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30496215

RESUMO

The multi-group asset flow model is a nonlinear dynamical system originally developed as a tool for understanding the behavioral foundations of market phenomena such as flash crashes and price bubbles. In this paper we use a modification of this model to analyze the dynamics of a single-asset market in situations when the trading rates of investors (i.e., their desire to exchange stock for cash) are prescribed ahead of time and independent of the state of the market. Under the assumption of fast trading compared to the time-rate of change in the prescribed trading rates we decompose the dynamics of the system to fast and slow components. We use the model to derive a variety of observations regarding the dynamics of price and investors' wealth, and the dependence of these quantities on the prescribed trading rates. In particular, we show that strategies with constant trading rates, which represent the well-known constant-rebalanced portfolio (CRP) strategies, are optimal in the sense that they minimize investment risks. In contrast, we show that investors pursuing non-CRP strategies are at risk of loss of wealth, as a result of the slow system not being integrable in the sense that cyclic trading rates do not always result in periodic price variations.


Assuntos
Modelos Econômicos , Dinâmica não Linear , Administração Financeira/estatística & dados numéricos
8.
Proc IFAC World Congress ; 51(19): 118-119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31384843

RESUMO

Renal function can become compromised in the event of shock, leading to acute kidney injury (AKI). As a result, microcirculatory dysfunction and disruption of oxygen homeostastis is observed, which leads to a shift in mitochondrial bioenergetics. These events can be studied by assessing the functionality in healthy, normal states and diseased states. Characterization of the spatial heterogeneity of mitochondrial activity and capillary blood volume space in healthy renal cells was performed using intravital multi-photon microscopy. The developed metrics that were used for depiction and quantification of the physiologic normal state can be applied to a diseased state, allowing the extent of microcirculatory dysfunction to be observed and evaluated.

9.
Comput Chem Eng ; 110: 1-12, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-31427833

RESUMO

The inverse problem associated with fitting parameters of an ordinary differential equation (ODE) system to data is nonlinear and multimodal, which is of great challenge to gradient-based optimizers. Markov Chain Monte Carlo (MCMC) techniques provide an alternative approach to solving these problems and can escape local minima by design. APT-MCMC was created to allow users to setup ODE simulations in Python and run as compiled C++ code. It combines affine-invariant ensemble of samplers and parallel tempering MCMC techniques to improve the simulation efficiency. Simulations use Bayesian inference to provide probability distributions of parameters, which enable analysis of multiple minima and parameter correlation. Benchmark tests result in a 20×-60× speedup but 14% increase in memory usage against emcee, a similar MCMC package in Python. Several MCMC hyperparameters were analyzed: number of temperatures, ensemble size, step size, and swap attempt frequency. Heuristic tuning guidelines are provided for setting these hyperparameters.

10.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904202

RESUMO

Immunosenescence, an age-related decline in immune function, is a major contributor to morbidity and mortality in the elderly. Older hosts exhibit a delayed onset of immunity and prolonged inflammation after an infection, leading to excess damage and a greater likelihood of death. Our study applies a rule-based model to infer which components of the immune response are most changed in an aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks) were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500 PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6 points over 7 days in the lethal case, after which all mice had died. Data varied primarily in the onset of immunity, particularly the inflammatory response, which led to a 2-day delay in the clearance of the virus from older hosts in the sublethal cohort. We developed a Boolean model to describe the interactions between the virus and 21 immune components, including cells, chemokines, and cytokines, of innate and adaptive immunity. The model identifies distinct sets of rules for each age group by using Boolean operators to describe the complex series of interactions that activate and deactivate immune components. Our model accurately simulates the immune responses of mice of both ages and with both inocula included in the data (95% accurate for younger mice and 94% accurate for older mice) and shows distinct rule choices for the innate immunity arm of the model between younger and aging mice in response to influenza A virus infection.IMPORTANCE Influenza virus infection causes high morbidity and mortality rates every year, especially in the elderly. The elderly tend to have a delayed onset of many immune responses as well as prolonged inflammatory responses, leading to an overall weakened response to infection. Many of the details of immune mechanisms that change with age are currently not well understood. We present a rule-based model of the intrahost immune response to influenza virus infection. The model is fit to experimental data for young and old mice infected with influenza virus. We generated distinct sets of rules for each age group to capture the temporal differences seen in the immune responses of these mice. These rules describe a network of interactions leading to either clearance of the virus or death of the host, depending on the initial dosage of the virus. Our models clearly demonstrate differences in these two age groups, particularly in the innate immune responses.


Assuntos
Interações Hospedeiro-Patógeno , Imunossenescência , Modelos Imunológicos , Infecções por Orthomyxoviridae/imunologia , Imunidade Adaptativa , Fatores Etários , Animais , Quimiocinas/imunologia , Citocinas/imunologia , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Análise de Sobrevida
11.
Crit Care Med ; 44(6): e432-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26968022

RESUMO

OBJECTIVES: Sepsis therapies have proven to be elusive because of the difficulty of translating biologically sound and effective interventions in animal models to humans. A part of this problem originates from the fact that septic patients present at various times after the onset of sepsis, whereas the exact time of infection is controlled in animal models. We sought to determine whether data mining longitudinal physiologic data in a nonhuman primate model of Escherichia coli-induced sepsis could help inform the time of onset of infection. DESIGN: A nearest-neighbor approach was used to back cast the time of onset of infection in animal models of sepsis. Animal data were censored to simulate prospective monitoring at any moment along the septic infection. This was compared against an uncensored database to find the most similar animal in order to estimate the infection onset time. Leave-one-out cross-validation was used for validation. Biomarker selection was performed based on the criteria of estimation accuracy and/or ease of measurement. SETTING: Computational experimental on existing experimental data. SUBJECTS: Retrospective data from 33 septic baboons (Papio ursinus) subjected to Escherichia coli infusion. Validation was performed using 14 pigs that were subjected to surgically induced fecal peritonitis and 22 pigs that were subjected to lipopolysaccharide infusion. MEASUREMENTS AND MAIN RESULTS: Longitudinal physiologic and serum markers, time of death. The presence of uniquely changing biomarkers during septic infection enabled the estimation of infection onset time in the datasets. Various combinations of temporal biomarkers, such as WBC, oxygen content, mean arterial pressure, and heart rate, yielded estimation accuracies of up to 97.8%. The use of temporal vital signs and a single measurement of serum biomarkers yielded highly accurate estimates without the need for invasive measurements. Validation in the pig data revealed similar results despite the heterogeneity of multiple experimental cohorts. This suggests that the method may be effective if sufficiently similar subjects are present in the database. CONCLUSIONS: One nearest-neighbor analysis showed promise in accurately identifying the onset of infection given a database of known infection times and of sufficient breadth. We suggest that this approach is ready for evaluation within the clinical setting using human data.


Assuntos
Algoritmos , Mineração de Dados , Infecções por Escherichia coli/complicações , Sepse/fisiopatologia , Animais , Pressão Arterial , Biomarcadores/sangue , Biologia Computacional , Modelos Animais de Doenças , Frequência Cardíaca , Contagem de Leucócitos , Oxigênio/sangue , Papio , Reconhecimento Automatizado de Padrão , Estudos Retrospectivos , Sepse/microbiologia , Suínos , Fatores de Tempo
12.
PLoS One ; 10(8): e0134012, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244863

RESUMO

We apply a previously developed 4-variable ordinary differential equation model of in-host immune response to pneumococcal pneumonia to study the variability of the immune response of MF1 mice and to explore bacteria-driven differences in disease progression and outcome. In particular, we study the immune response to D39 strain of bacteria missing portions of the pneumolysin protein controlling either the hemolytic activity or complement-activating activity, the response to D39 bacteria deficient in either neuraminidase A or B, and the differences in the response to D39 (serotype 2), 0100993 (serotype 3), and TIGR4 (serotype 4) bacteria. The model accurately reproduces infection kinetics in all cases and provides information about which mechanisms in the immune response have the greatest effect in each case. Results suggest that differences in the ability of bacteria to defeat immune response are primarily due to the ability of the bacteria to elude nonspecific clearance in the lung tissue as well as the ability to create damage to the lung epithelium.


Assuntos
Algoritmos , Modelos Imunológicos , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/imunologia , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Isoenzimas/imunologia , Isoenzimas/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Neuraminidase/imunologia , Neuraminidase/metabolismo , Pneumonia Pneumocócica/microbiologia , Sorotipagem , Especificidade da Espécie , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/fisiologia , Estreptolisinas/imunologia , Estreptolisinas/metabolismo
13.
J Theor Biol ; 374: 83-93, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25843213

RESUMO

Mortality from influenza infections continues as a global public health issue, with the host inflammatory response contributing to fatalities related to the primary infection. Based on Ordinary Differential Equation (ODE) formalism, a computational model was developed for the in-host response to influenza A virus, merging inflammatory, innate, adaptive and humoral responses to virus and linking severity of infection, the inflammatory response, and mortality. The model was calibrated using dense cytokine and cell data from adult BALB/c mice infected with the H1N1 influenza strain A/PR/8/34 in sublethal and lethal doses. Uncertainty in model parameters and disease mechanisms was quantified using Bayesian inference and ensemble model methodology that generates probabilistic predictions of survival, defined as viral clearance and recovery of the respiratory epithelium. The ensemble recovers the expected relationship between magnitude of viral exposure and the duration of survival, and suggests mechanisms primarily responsible for survival, which could guide the development of immuno-modulatory interventions as adjuncts to current anti-viral treatments. The model is employed to extrapolate from available data survival curves for the population and their dependence on initial viral aliquot. In addition, the model allows us to illustrate the positive effect of controlled inflammation on influenza survival.


Assuntos
Inflamação/virologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Modelos Biológicos , Infecções por Orthomyxoviridae/imunologia , Animais , Teorema de Bayes , Simulação por Computador , Citocinas/metabolismo , Feminino , Humanos , Imunidade Inata , Influenza Humana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Método de Monte Carlo , Probabilidade , Espécies Reativas de Oxigênio/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(47): 16742-7, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385626

RESUMO

Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability­the stiff, naturally straight double-helical structure­rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , DNA/química , Proteínas de Ligação a DNA/química , Óperon
15.
BMC Public Health ; 14: 1019, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25266818

RESUMO

BACKGROUND: Agent based models (ABM) are useful to explore population-level scenarios of disease spread and containment, but typically characterize infected individuals using simplified models of infection and symptoms dynamics. Adding more realistic models of individual infections and symptoms may help to create more realistic population level epidemic dynamics. METHODS: Using an equation-based, host-level mathematical model of influenza A virus infection, we develop a function that expresses the dependence of infectivity and symptoms of an infected individual on initial viral load, age, and viral strain phenotype. We incorporate this response function in a population-scale agent-based model of influenza A epidemic to create a hybrid multiscale modeling framework that reflects both population dynamics and individualized host response to infection. RESULTS: At the host level, we estimate parameter ranges using experimental data of H1N1 viral titers and symptoms measured in humans. By linearization of symptoms responses of the host-level model we obtain a map of the parameters of the model that characterizes clinical phenotypes of influenza infection and immune response variability over the population. At the population-level model, we analyze the effect of individualizing viral response in agent-based model by simulating epidemics across Allegheny County, Pennsylvania under both age-specific and age-independent severity assumptions. CONCLUSIONS: We present a framework for multi-scale simulations of influenza epidemics that enables the study of population-level effects of individual differences in infections and symptoms, with minimal additional computational cost compared to the existing population-level simulations.


Assuntos
Epidemias , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Modelos Teóricos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Pessoa de Meia-Idade , Pennsylvania/epidemiologia , Adulto Jovem
16.
PLoS One ; 9(5): e92475, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24800809

RESUMO

Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor.


Assuntos
DNA Bacteriano/química , Repressores Lac/metabolismo , Modelos Biológicos , Conformação de Ácido Nucleico , DNA Bacteriano/metabolismo , Elasticidade , Método de Monte Carlo , Ligação Proteica
17.
J Theor Biol ; 353: 44-54, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24594373

RESUMO

The seriousness of pneumococcal pneumonia in mouse models has been shown to depend both on bacterial serotype and murine strain. We here present a simple ordinary differential equation model of the intrahost immune response to bacterial pneumonia that is capable of capturing diverse experimentally determined responses of various murine strains. We discuss the main causes of such differences while accounting for the uncertainty in the estimation of model parameters. We model the bacterial population in both the lungs and blood, the cellular death caused by the infection, and the activation and immigration of phagocytes to the infected tissue. The ensemble model suggests that inter-strain differences in response to streptococcus pneumonia inoculation reside in the strength of nonspecific immune response and the rate of extrapulmonary phagocytosis.


Assuntos
Interações Hospedeiro-Patógeno , Modelos Biológicos , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Modelos Animais de Doenças , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos , Pneumonia Pneumocócica/patologia , Análise de Componente Principal , Reprodutibilidade dos Testes
18.
Biochem Soc Trans ; 41(2): 554-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23514153

RESUMO

In the present article, we summarize our recent studies of DNA dynamics using the generalized immersed boundary method. Our analysis of the effects of electrostatic repulsion on the dynamics of DNA supercoiling revealed that, after perturbation, a pre-twisted DNA collapses into a compact supercoiled configuration that is sensitive to the initial excess link and ionic strength of the solvent. A stochastic extension of the generalized immersed boundary method shows that DNA in solution subjected to a constant electric field is compressed into a configuration with smaller radius of gyration and smaller ellipticity ratio than those expected for such a molecule in a thermodynamic equilibrium.


Assuntos
Simulação por Computador , DNA Super-Helicoidal/química , Eletricidade , Modelos Moleculares , Processos Estocásticos
19.
Biochem Soc Trans ; 41(2): 559-64, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23514154

RESUMO

Bacterial gene expression is regulated by DNA elements that often lie far apart along the genomic sequence, but come close together during genetic processing. The intervening residues form loops, which are organized by the binding of various proteins. For example, the Escherichia coli Lac repressor protein binds DNA operators, separated by 92 or 401 bp, and suppresses the formation of gene products involved in the metabolism of lactose. The system also includes several highly abundant architectural proteins, such as the histone-like (heat-unstable) HU protein, which severely deform the double helix upon binding. In order to gain a better understanding of how the naturally stiff DNA double helix forms the short loops detected in vivo, we have developed new computational methods to study the effects of various non-specific binding proteins on the three-dimensional configurational properties of DNA sequences. The present article surveys the approach that we use to generate ensembles of spatially constrained protein-decorated DNA structures (minicircles and Lac repressor-mediated loops) and presents some of the insights gained from the correspondence between computation and experiment about the potential contributions of architectural and regulatory proteins to DNA looping and gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , Simulação por Computador , DNA/química , Conformação de Ácido Nucleico , Proteínas de Ligação a DNA/metabolismo
20.
PLoS One ; 8(2): e56548, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457581

RESUMO

The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , Óperon Lac , Repressores Lac/química , Repressores Lac/metabolismo , Modelos Moleculares , Método de Monte Carlo , DNA Bacteriano/genética , Conformação de Ácido Nucleico , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...